skip to main content
article

Simulating water and smoke with an octree data structure

Published:01 August 2004Publication History
Skip Abstract Section

Abstract

We present a method for simulating water and smoke on an unrestricted octree data structure exploiting mesh refinement techniques to capture the small scale visual detail. We propose a new technique for discretizing the Poisson equation on this octree grid. The resulting linear system is symmetric positive definite enabling the use of fast solution methods such as preconditioned conjugate gradients, whereas the standard approximation to the Poisson equation on an octree grid results in a non-symmetric linear system which is more computationally challenging to invert. The semi-Lagrangian characteristic tracing technique is used to advect the velocity, smoke density, and even the level set making implementation on an octree straightforward. In the case of smoke, we have multiple refinement criteria including object boundaries, optical depth, and vorticity concentration. In the case of water, we refine near the interface as determined by the zero isocontour of the level set function.

Skip Supplemental Material Section

Supplemental Material

References

  1. ALMGREN, A., BELL, J., COLELLA, P., HOWELL, L., AND WELCOME, M. 1998. A conservative adaptive projection method for the variable density incompressible navier-stokes equations. J. Comput. Phys. 142, 1--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. BERGER, M., AND COLELLA, P. 1989. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. BERGER, M., AND OLIGER, J. 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484--512.Google ScholarGoogle ScholarCross RefCross Ref
  4. CARLSON, M., MUCHA, P., VAN HORN III, R., AND TURK, G. 2002. Melting and flowing. In ACM SIGGRAPH Symposium on Computer Animation, 167--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. CHEN, J., AND LOBO, N. 1994. Toward interactive-rate simulation of fluids with moving obstacles using the navier-stokes equations. Computer Graphics and Image Processing 57, 107--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. CHEN, S., MERRIMAN, B., OSHER, S., AND SMEREKA, P. 1997. A simple level set method for solving stefan problems. 8--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. DAY, M., COLELLA, P., LIJEWSKI, M., RENDLEMAN, C., AND MARCUS, D. 1998. Embedded boundary algorithms for solving the poisson equation on complex domains. Tech. rep., Lawrence Berkeley National Laboratory (LBNL-41811).Google ScholarGoogle Scholar
  8. ENRIGHT, D., FEDKIW, R., FERZIGER, J., AND MITCHELL, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comp. Phys. 183, 83--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. ENRIGHT, D., LOSASSO, F., AND FEDKIW, R. 2004. A fast and accurate semi-Lagrangian particle level set method. Computers and Structures, (in press).Google ScholarGoogle Scholar
  11. FEDKIW, R., STAM, J., AND JENSEN, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. FELDMAN, B. E., O'BRIEN, J. F., AND ARIKAN, O. 2003. Animating suspended particle explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 708--715. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liquids. In Proc. of ACM SIGGRAPH 2001, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. FOSTER, N., AND METAXAS, D. 1996. Realistic animation of liquids. Graph. Models and Image Processing 58, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. FOSTER, N., AND METAXAS, D. 1997. Controlling fluid animation. In Computer Graphics International 1997, 178--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. FOSTER, N., AND METAXAS, D. 1997. Modeling the motion of a hot, turbulent gas. In Proc. of SIGGRAPH 97, 181--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. FRISKEN, S., PERRY, R., ROCKWOOD, A., AND JONES, T. 2000. Adaptively sampled distance fields: a general representation of shape for computer graphics. In Proc. SIGGRAPH 2000, 249--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. GIBOU, F., FEDKIW, R., CHENG, L.-T., AND KANG, M. 2002. A second--order--accurate symmetric discretization of the poisson equation on irregular domains. 205--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. HAM, F., LIEN, F., AND STRONG, A. 2002. A fully conservative secondorder finite difference scheme for incompressible flow on nonuniform grids. J. Comput. Phys. 117, 117--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. HARLOW, F., AND WELCH, J. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182--2189.Google ScholarGoogle ScholarCross RefCross Ref
  21. HONG, J.-M., AND KIM, C.-H. 2003. Animation of bubbles in liquid. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 253--262.Google ScholarGoogle ScholarCross RefCross Ref
  22. JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J. 2002. Dual contouring of Hermite data. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 339--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. KASS, M., AND MILLER, G. 1990. Rapid, stable fluid dynamics for computer graphics. In Computer Graphics (Proc. of SIGGRAPH 90), vol. 24, 49--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling of natural flames. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 729--735. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. LEE, H., DESBRUN, M., AND SCHRODER, P. 2003. Progressive encoding of complex isosurfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 471--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. MIYAZAKI, R., DOBASHI, Y., AND NISHITA, T. 2002. Simulation of cumuliform clouds based on computational fluid dynamics. Proc. Eurographics 2002 Short Presentation, 405--410.Google ScholarGoogle Scholar
  27. MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. NGUYEN, D., FEDKIW, R., AND JENSEN, H. 2002. Physically based modeling and animation of fire. In ACM Trans. Graph. (SIGGRAPH Proc.), vol. 29, 721--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEIDEL, H. 2003. Multi-Level Partition of Unity Implicits. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 463--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. PERRY, R., AND FRISKEN, S. 2001. Kizamu: a system for sculpting digital characters. In Proc. SIGGRAPH 2001, vol. 20, 47--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. POPINET, S. 2003. Gerris: A tree-based adaptive solver for the incompressible euler equations in complex geometries. J. Comp. Phys. 190, 572--600. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. PREMOZE, S., TASDIZEN, T., BIGLER, J., LEFOHN, A., AND WHITAKER, R. 2003. Particle-based simulation of fluids. In Comp. Graph. Forum (Eurographics Proc.), vol. 22, 401--410.Google ScholarGoogle ScholarCross RefCross Ref
  33. RASMUSSEN, N., NGUYEN, D., GEIGER, W., AND FEDKIW, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 703--707. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. ROUSSEL, O., SCHNEIDER, K., TSIGULIN, A., AND BOCKHORN, H. 2003. A conservative fully adaptive multiresolution algorithm for parabolic pdes. J. Comput. Phys. 188, 493--523. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. SAAD, Y. 1996. Iterative methods for sparse linear systems. PWS Publishing. New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. SAMET, H. 1989. The Design and Analysis of Spatial Data Structures. Addison-Wesley, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. SETHIAN, J. 1996. A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93, 1591--1595.Google ScholarGoogle ScholarCross RefCross Ref
  38. SOCHNIKOV, V., AND EFRIMA, S. 2003. Level set calculations of the evolution of boundaries on a dynamically adaptive grid. Int. J. Num. Methods in Eng. 56, 1913--1929.Google ScholarGoogle ScholarCross RefCross Ref
  39. STAM, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. STAM, J. 2003. Flows on surfaces of arbitrary topology. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 724--731. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. STRAIN, J. 1999. Fast tree-based redistancing for level set computations. J. Comput. Phys. 152, 664--686. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. STRAIN, J. 1999. Tree methods for moving interfaces. J. Comput. Phys. 151, 616--648. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. STRAIN, J. 2000. A fast modular semi-lagrangian method for moving interfaces. J. Comput. Phys. 161, 512--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. SUSSMAN, M., ALMGREN, A., BELL, J., COLELLA, P., HOWELL, L., AND WELCOME, M. 1999. An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 148, 81--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. SUSSMAN, M. 2003. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comp. Phys. 187, 110--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. TAKAHASHI, T., FUJII, H., KUNIMATSU, A., HIWADA, K., SAITO, T., TANAKA, K., AND UEKI, H. 2003. Realistic animation of fluid with splash and foam. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 391--400.Google ScholarGoogle ScholarCross RefCross Ref
  47. TREUILLE, A., MCNAMARA, A., POPOVIĆ, Z., AND STAM, J. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 716--723. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. TSITSIKLIS, J. 1995. Efficient algorithms for globally optimal trajectories. IEEE Trans. on Automatic Control 40, 1528--1538.Google ScholarGoogle ScholarCross RefCross Ref
  49. WESTERMANN, R., KOBBELT, L., AND ERTL, T. 1999. Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces. The Vis. Comput. 15, 2, 100--111.Google ScholarGoogle ScholarCross RefCross Ref
  50. YNGVE, G., O'BRIEN, J., AND HODGINS, J. 2000. Animating explosions. In Proc. SIGGRAPH 2000, vol. 19, 29--36. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Simulating water and smoke with an octree data structure

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 23, Issue 3
      August 2004
      684 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1015706
      Issue’s Table of Contents

      Copyright © 2004 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 August 2004
      Published in tog Volume 23, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader