skip to main content
article

A distributed database for bio-molecular images

Published: 01 June 2004 Publication History

Abstract

Information technology research has played a significant role in the genomics revolution over the past decade, from aiding with large-scale sequence assembly to automating gene identification to efficiently searching databases by sequence similarity. The tremendous amount of information gathered from genomics will be dwarfed in the next decade by the knowledge to be gained from comprehensive, systematic studies of the properties and behaviors of all proteins and other biomolecules. High-resolution imaging of molecules and cells will be critical for understanding complex systems such as the nervous system, whether it be for the localization of specific neuron types within a region of the central nervous system, the branching pattern of dendritic trees, or the localization of molecules at the subcellular level. Furthermore, knowing how these distribution patterns and subcellular locations change as a function of time is critical to understanding how cells respond to stress, injury, aging, and disease. We are developing sophisticated information technologies for collecting and interpreting the enormous volume of biological image data. A major outcome of the research will be a unique, fully operational, distributed digital library of biomolecular image data accessible to researchers around the world. Such searchable databases will make it possible to optimally understand and interpret the data, leading to a more complete and integrated understanding of cellular structure, function and regulation.

References

[1]
P. D. Andrews, I. S. Harper, and J. R. Swedlow. To 5D and beyond: Quantitative fluorescence microscopy in the postgenomic era. Traffic, 3(1):29--36, Jan. 2002.
[2]
S. Bhagavathy, J. Tesic, and B. Manjunath. On the Raleigh nature of Gabor filter outputs. In Proc. ICPR, 2003.
[3]
M. V. Boland and R. F. Murphy. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics, 17(12):1213--1223, 2001.
[4]
O. Camoglu, T. Kahveci, and A. K. Singh. Towards index-based similarity search for protein structure databases. In Proc. IEEE Computer Society Bioinformatics Conference, 2003.
[5]
J. Carazo and E. H. Stelzer. The BioImage database project: Organizing multidimensional biological images in an object-relational database. J. Struct. Biol., 125(2--3):97--102, 1999.
[6]
X. Chen, M. Velliste, S. Weinstein, J. W. Jarvik, and R. F. Murphy. Location proteomics---building subcellular location trees from high resolution 3D fluorescence microscope images of randomly-tagged proteins. In Proc. SPIE, volume 4962, 2003.
[7]
N. Cuenca, P. Dong, K. Linberg, S. Fisher, and H. Kolb. Choline acetyltransferase is expressed by non-starburst amacrine cells in the ground squirrel retina. Brain Res., 964:21--30, 2003.
[8]
I. L. Dryden and K. V. Mardia. Statistical Shape Analysis. Wiley, 1998.
[9]
R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience, 2000.
[10]
N. Duta and M. Sonka. Segmentation and interpretation of MR brain images: An improved active shape model. IEEE Transactions on Medical Imaging, 17(6):1049--1062, Dec. 1998.
[11]
C. Faloutsos. Searching Multimedia Databases by Content. Kluwer, 1996.
[12]
C. Faloutsos and K.-I. Lin. FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In Proc. SIGMOD, pages 163--174, 1995.
[13]
R. N. Fariss, R. S. Molday, S. K. Fisher, and B. Matsumoto. Evidence from normal and degenerating photoreceptors that two outer segment integral membrane proteins have separate transport pathways. J. Comp. Neurol., 387:148--156, 1997.
[14]
G. M. Haley and B. S. Manjunath. Rotation-invariant texture classification using a complete space-frequency model. IEEE Transactions on Image Processing, 8(2):255--269, Feb. 1999.
[15]
K. Huang, J. Lin, J. A. Gajnak, and R. F. Murphy. Image content-based retrieval and automated interpretation of flourescence microscope images via the protein subcellular location image database. In Proc. ISBI, pages 325--328, July 2002.
[16]
K. Huang, M. Velliste, and R. F. Murphy. Feature reduction for improved recognition of subcellular location patterns in fluorescence microscope images. In Proc. SPIE, pages 307--318, 2003.
[17]
Y. Ishikawa, R. Subramanya, and C. Faloutsos. MindReader: Querying databases through multiple examples. In Proc. VLDB, pages 218--227, 1998.
[18]
J. Jarvik, G. Fisher, C. Shi, L. Hennen, C. Hauser, S. Adler, and P. Berget. In vivo functional proteomics: Mammalian genome annotation using CD-tagging. Bio Techniques, 33:852--867, 2002.
[19]
T. Kahveci and A. Singh. MAP: Searching large genome databases. In Proc. Pacific Symposium on Biocomputing, 2003.
[20]
K. V. R. Kanth, D. Agrawal, and A. K. Singh. Dimensionality reduction for similarity searching in dynamic databases. In Proc. SIGMOD, pages 166--176, 1998.
[21]
A. Kumar, S. Agarwal, J. Heyman, S. Matson, M. Heidtman, S. Piccirillo, L. Umansky, A. Drawid, R. Jansen, Y. Liu, K.-H. Cheung, P. Miller, M. Gerstein, G. Roeder, and M. Snyder. Subcellular localization of the yeast proteome. Genes Dev., 16:707--719, 2002.
[22]
C. A. Lang and A. K. Singh. Modeling high-dimensional index structures using sampling. In Proc. SIGMOD, pages 389--400, 2001.
[23]
G. Lewis, K. Linberg, and S. Fisher. Neurite outgrowth from bipolar and horizontal cells after experimental retinal detachment. Invest. Opthal. Vis. Sci., 39(2):424--34, Feb. 1998.
[24]
G. Lewis, B. Matsumoto, and S. Fisher. Changes in the organization and expression of cytoskeletal proteins during retinal degeneration induced by retinal detachment. Invest. Opthal. Vis. Sci., 36:2404--2416, 1995.
[25]
B. S. Manjunath, P. Salembier, and T. Sikora, editors. Introduction to MPEG 7: Multimedia Content Description Language. Wiley, 2002.
[26]
R. Marc, R. Murry, S. Fisher, K. Linberg, and G. Lewis. Amino acid signatures in the detached cat retina. Invest. Opthal. Vis. Sci., 39:1694--1702, 1998.
[27]
R. F. Murphy, M. Velliste, and G. Porreca. Robust classification of subcellular location patterns in fluorescence microsocope images. In Proceedings of the 2002 12th IEEE Workshop on Neural Networks for Signal Processing, pages 67--76, 2002.
[28]
R. F. Murphy, M. Velliste, and G. Porreca. Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images. J. VLSI Sig. Proc., 35:311--321, 2003.
[29]
M. Rolls, P. Stein, S. Taylor, E. Ha, F. McKeon, and T. Rapoport. A visual screen of a GFP-fusion library identifies a new type of nuclear envelope membrane protein. J. Cell Biol., 146:29--44, 1999.
[30]
M. E. Saban and B. Manjunath. Video region segmentation by spatio-temporal watersheds. In Proc. ICIP, Barcelona, Spain, Sept. 2003.
[31]
B. Sumengen, B. Manjunath, and C. Kenney. Image segmentation using multi-region stability and edge stretch. In Proc. ICIP, pages 429--432, Sept. 2003.
[32]
J. R. Swedlow, I. Goldberg, E. Brauner, and P. K. Sorger. Informatics and quantitative analysis in biological imaging. Science, 300:100--102, 2003.
[33]
J. Tešić and B. Manjunath. Nearest neighbor search for relevance feedback. In Proc. CVPR, volume 2, June 2003.
[34]
M. Velliste and R. F. Murphy. Automated determination of protein subcellular locations from 3D fluorescence microscope images. In Proceedings of the 2002 IEEE International Symposium on Biomedical Imaging, pages 867--870, July 2002.
[35]
L. Wu and C. Faloutsos. Making every bit count: fast nonlinear axis scaling. In Proc. KDD, pages 664--669. ACM Press, 2002.

Cited By

View all
  • (2011)Comparison of parameter‐adapted segmentation methods for fluorescence micrographsCytometry Part A10.1002/cyto.a.2112279A:11(933-945)Online publication date: 14-Oct-2011
  • (2009)Cellular proteomic characterization using active shape and non-Gaussinan stochastic texture modelsProceedings of the 16th IEEE international conference on Image processing10.5555/1819298.1819665(3353-3356)Online publication date: 7-Nov-2009
  • (2009)Cellular proteomic characterization using Active Shape and Non-Gaussinan stochastic texture models2009 16th IEEE International Conference on Image Processing (ICIP)10.1109/ICIP.2009.5413888(3389-3392)Online publication date: Nov-2009
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGMOD Record
ACM SIGMOD Record  Volume 33, Issue 2
June 2004
126 pages
ISSN:0163-5808
DOI:10.1145/1024694
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 June 2004
Published in SIGMOD Volume 33, Issue 2

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2011)Comparison of parameter‐adapted segmentation methods for fluorescence micrographsCytometry Part A10.1002/cyto.a.2112279A:11(933-945)Online publication date: 14-Oct-2011
  • (2009)Cellular proteomic characterization using active shape and non-Gaussinan stochastic texture modelsProceedings of the 16th IEEE international conference on Image processing10.5555/1819298.1819665(3353-3356)Online publication date: 7-Nov-2009
  • (2009)Cellular proteomic characterization using Active Shape and Non-Gaussinan stochastic texture models2009 16th IEEE International Conference on Image Processing (ICIP)10.1109/ICIP.2009.5413888(3389-3392)Online publication date: Nov-2009
  • (2008)Top-k Spatial Joins of Probabilistic ObjectsProceedings of the 2008 IEEE 24th International Conference on Data Engineering10.1109/ICDE.2008.4497465(566-575)Online publication date: 7-Apr-2008
  • (2007)Analyzing and mining automated imaging experimentsExpert Opinion on Drug Discovery10.1517/17460441.2.4.5612:4(561-569)Online publication date: 14-May-2007
  • (2007)APLA: Indexing Arbitrary Probability Distributions2007 IEEE 23rd International Conference on Data Engineering10.1109/ICDE.2007.367940(946-955)Online publication date: Apr-2007
  • (2006)Availability of multi-object operationsProceedings of the 3rd conference on Networked Systems Design & Implementation - Volume 310.5555/1267680.1267696(16-16)Online publication date: 8-May-2006
  • (2006)Towards Automated Bioimage Analysis: From Features to Semantics3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006.10.1109/ISBI.2006.1624901(255-258)Online publication date: 2006
  • (2006)Probabilistic Segmentation and Analysis of Horizontal CellsProceedings of the Sixth International Conference on Data Mining10.1109/ICDM.2006.129(980-985)Online publication date: 18-Dec-2006
  • (2006)Automated Interpretation of Protein Subcellular Location Patterns10.1016/S0074-7696(06)49004-5(193-227)Online publication date: 2006
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media