skip to main content
10.1145/1028523.1028542acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
Article

Point based animation of elastic, plastic and melting objects

Published: 27 August 2004 Publication History

Abstract

We present a method for modeling and animating a wide spectrum of volumetric objects, with material properties anywhere in the range from stiff elastic to highly plastic. Both the volume and the surface representation are point based, which allows arbitrarily large deviations form the original shape. In contrast to previous point based elasticity in computer graphics, our physical model is derived from continuum mechanics, which allows the specification of common material properties such as Young's Modulus and Poisson's Ratio.
In each step, we compute the spatial derivatives of the discrete displacement field using a Moving Least Squares (MLS) procedure. From these derivatives we obtain strains, stresses and elastic forces at each simulated point. We demonstrate how to solve the equations of motion based on these forces, with both explicit and implicit integration schemes. In addition, we propose techniques for modeling and animating a point-sampled surface that dynamically adapts to deformations of the underlying volumetric model.

Supplementary Material

JPG File (p141-muller_off_line.jpg)
JPG File (p141-muller_real_time.jpg)
p141-muller_offline.avi (p141-muller_off_line.avi)
Supplemental video
AVI File (p141-muller_real_time.avi)
Supplemental video

References

[1]
{AA03} Adamson A., Alexa M.: Approximating and intersecting surfaces from points. In Proceedings of the Eurographics/ACM SIGGRAPH symposium on Geometry processing (2003), pp. 230--239.
[2]
{ABCO*03} Alexa M., Behr J., Cohen-or D., Fleishman S., Levin D., Silva C. T.: Computing and rendering point set surfaces. IEEE TVCG 9, 1 (2003), 3--15.
[3]
{Ask97} Askes H.: Everything you always wanted to know about the Element-Free Galerkin method, and more. Tech. rep., TU Delft nr. 03.21.1.31.29, 1997.
[4]
{BKO*96} Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P.: Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering 139, 3 (1996), 3--47.
[5]
{Bli82} Blinn J. F.: A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 3 (1982), 235--256.
[6]
{BS95} Blac C., Schlick C.: Extended field functions for soft objects. In Implicit Surfaces '95 (1995), pp. 21--32.
[7]
{BW98} Baraff D., Witkin A.: Large steps in cloth simulation. In Proceedings of SIGGRAPH 1998 (1998), pp. 43--54.
[8]
{Chu96} Chung T. J.: Applied Continuum Mechanics. Cambridge Univ. Press, NY, 1996.
[9]
{Coo95} Cook R. D.: Finite Element Modeling for Stress Analysis. John Wiley & Sons, NY, 1995.
[10]
{DC95} Desbrun M., Cani M.-P.: Animating soft substances with implicit surfaces. In Computer Graphics Proceedings (1995), ACM SIGGRAPH, pp. 287--290.
[11]
{DC96} Desbrun M., Cani M.-P.: Smoothed particles: A new paradigm for animating highly deformable bodies. In 6th Eurographics Workshop on Computer Animation and Simulation '96 (1996), pp. 61--76.
[12]
{DC99} Desbrun M., Cani M.-P.: Space-Time Adaptive Simulation of Highly Deformable Substances. Tech. rep., INRIA Nr. 3829, 1999.
[13]
{DDCB01} Debunne G., Desbrun M., Cani M.-P., Barr A.: Dynamic real-time deformations using space & time adaptive sampling. In Computer Graphics Proceedings (Aug. 2001), Annual Conference Series, ACM SIGGRAPH 2001, pp. 31--36.
[14]
{DSB99} Desbrun M., Schröder P., Barr A. H.: Interactive animation of structured deformable objects. In Graphics Interface '99 (1999).
[15]
{FM03} Fries T.-P., Matthies H. G.: Classification and Overview of Meshfree Methods. Tech. rep., TU Brunswick, Germany Nr. 2003-03, 2003.
[16]
{GKS02} Grinspun E., Krysl P., Schröder P.: CHARMS: A simple framework for adaptive simulation. In Proceedings of SIGGRAPH 2002 (2002), pp. 281--290.
[17]
{GM97} Gibson S. F., Mirtich B.: A survey of deformable models in computer graphics. Technical Report TR-97-19, MERL, Cambridge, MA, 1997.
[18]
{JP99} James D. L., Pai D. K.: Artdefo, accurate real time deformable objects. In Computer Graphics Proceedings (Aug. 1999), Annual Conference Series, ACM SIGGRAPH 99, pp. 65--72.
[19]
{Lev98} Levin D.: The approximation power of moving least-squares. Math. Comp. 67, 224 (1998), 1517--1531.
[20]
{Lev01} Levin D.: Mesh-independent surface interpolation. In Advances in Computational Mathematics (2001).
[21]
{Liu02} Liu G. R.: Mesh-Free Methods. CRC Press, 2002.
[22]
{LS81} Lancaster P., Salkauskas K.: Surfaces generated by moving least squares methods. Mathematics of Computation 87 (1981), 141--158.
[23]
{MCG03} Moller M., Charypar D., Gross M.: Particle-based fluid simulation for interactive applications. Proceedings of 2003 ACM SIGGRAPH Symposium on Computer Animation (2003), 154--159.
[24]
{Mon92} Monaghan J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. and Astrophysics 30 (1992), 543.
[25]
{NTVR92} Nayroles B., Touzot G., Villon P., Ricard A.: Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics 10, 5 (1992), 307--318.
[26]
{OBH02} O'Brien J. F., Bargteil A. W., Hodgins J. K.: Graphical modeling and animation of ductile fracture. In Proceedings of SIGGRAPH 2002 (2002), pp. 291--294.
[27]
{OH99} O'Brien J. F., Hodgins J. K.: Graphical modeling and animation of brittle fracture. In Proceedings of SIGGRAPH 1999 (1999), pp. 287--296.
[28]
{PGK02} Pauly M., Gross M., Kobbelt L. P.: Efficient simplification of point-sampled surfaces. In Proceedings of the conference on Visualization '02 (2002), IEEE Computer Society, pp. 163--170.
[29]
{PKKG03} Pauly M., Keiser R., Kobbelt L. P., Gross M.: Shape modeling with point-sampled geometry. ACM Trans. Graph. 22, 3 (2003), 641--650.
[30]
{PTVF92} Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P.: Numerical Recipes in C: The Art of Scientific Computing, second ed. Cambridge University Press, 1992.
[31]
{ST92} Szeliski R., Tonnesen D.: Surface modeling with oriented particle systems. Computer Graphics 26, 2 (1992), 185--194.
[32]
{Suk03} Sukumar N.: Meshless methods and partition of unity finite elements. In of the Sixth International ESAFORM Conference on Material Forming (2003), pp. 603--606.
[33]
{TF88} Terzopoulos D., Fleischer K.: Modeling inelastic deformation: viscoelasticity, plasticity, fracture. In Proceedings of the 15th annual conference on Computer graphics and interactive techniques (1988), ACM Press, pp. 269--278.
[34]
{THM*03} Teschner M., Heidelberger B., Müller M., Pomeranerts D., Gross M.: Optimized spatial hashing for collision detection of deformable objects. In Proc. Vision, Modeling, Visualization VMV (2003), pp. 47--54.
[35]
{Ton98} Tonnesen D.: Dynamically Coupled Particle Systems for Geometric Modeling, Reconstruction, and Animation. PhD thesis, University of Toronto, November 1998.
[36]
{TPBF87} Terzopoulos D., PLATT J., BARR A., FLEISCHER K.: Elastically deformable models. In Computer Graphics Proceedings (July 1987), Annual Conference Series, ACM SIGGRAPH 87, pp. 205--214.
[37]
{TPF89} Terzopoulos D., Platt J., Fleischer K.: Heating and melting deformable models (from goop to glop). In Graphics Interface '89 (1989), pp. 219--226.
[38]
{TW88} Terzopoulos D., Witkin A.: Physically based models with rigid and deformable components. IEEE Computer Graphics and Applications 8, 6 (1988), 41--51.
[39]
{WH94} Witkin A. P., Heckbert P. S.: Using particles to sample and control implicit surfaces. In Computer Graphics Proceedings (1994), ACM SIGGRAPH, pp. 269--277.
[40]
{WW89} Wyvill B., Wyvill G.: Field functions for implicit surfaces. In Visual Computer (1989).

Cited By

View all
  • (2025)Development of Object Fracture Simulation Using Reinforcement LearningJournal of Digital Contents Society10.9728/dcs.2025.26.1.23726:1(237-245)Online publication date: 31-Jan-2025
  • (2025)Advanced GPU Techniques for Dynamic Remeshing and Self-Collision Handling in Real-Time Cloth TearingIEEE Access10.1109/ACCESS.2024.352431813(3188-3203)Online publication date: 2025
  • (2025)A shape control method for soap bubble simulation using external forcesScientific Reports10.1038/s41598-025-90850-215:1Online publication date: 6-Mar-2025
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation
August 2004
388 pages
ISBN:3905673142

Sponsors

Publisher

Eurographics Association

Goslar, Germany

Publication History

Published: 27 August 2004

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

SCA04
Sponsor:
SCA04: Symposium on Computer Animation 2004
August 27 - 29, 2004
Grenoble, France

Acceptance Rates

Overall Acceptance Rate 183 of 487 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)61
  • Downloads (Last 6 weeks)3
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Development of Object Fracture Simulation Using Reinforcement LearningJournal of Digital Contents Society10.9728/dcs.2025.26.1.23726:1(237-245)Online publication date: 31-Jan-2025
  • (2025)Advanced GPU Techniques for Dynamic Remeshing and Self-Collision Handling in Real-Time Cloth TearingIEEE Access10.1109/ACCESS.2024.352431813(3188-3203)Online publication date: 2025
  • (2025)A shape control method for soap bubble simulation using external forcesScientific Reports10.1038/s41598-025-90850-215:1Online publication date: 6-Mar-2025
  • (2025)2D/3D Image morphing technology from traditional to modernInformation Fusion10.1016/j.inffus.2024.102913117:COnline publication date: 1-May-2025
  • (2024)Fast and Compact Partial Differential Equation (PDE)-Based Dynamic Reconstruction of Extended Position-Based Dynamics (XPBD) Deformation SimulationMathematics10.3390/math1220317512:20(3175)Online publication date: 11-Oct-2024
  • (2024)Research progress in human-like indoor scene interactionJournal of Image and Graphics10.11834/jig.24000429:6(1575-1606)Online publication date: 2024
  • (2024)Solid-Fluid Interaction on Particle Flow MapsACM Transactions on Graphics10.1145/368795943:6(1-20)Online publication date: 19-Dec-2024
  • (2024)Q3T Prisms: A Linear-Quadratic Solid Shell Element for Elastoplastic SurfacesSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687697(1-9)Online publication date: 3-Dec-2024
  • (2024)XPBI: Position-Based Dynamics with Smoothing Kernels Handles Continuum InelasticitySIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687577(1-12)Online publication date: 3-Dec-2024
  • (2024)Simplicits: Mesh-Free, Geometry-Agnostic Elastic SimulationACM Transactions on Graphics10.1145/365818443:4(1-11)Online publication date: 19-Jul-2024
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media