skip to main content
10.1145/1028523.1028565acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
Article

Animation and control of breaking waves

Published: 27 August 2004 Publication History

Abstract

Controlling fluids is still an open and challenging problem in fluid animation. In this paper we develop a novel fluid animation control approach and we present its application to controlling breaking waves. In our <i>Slice Method</i> framework an animator defines the shape of a breaking wave at a desired moment in its evolution based on a library of breaking waves. Our system computes then the subsequent dynamics with the aid of a 3D Navier-Stokes solver. The wave dynamics previous to the moment the animator exerts control can also be generated based on the wave library. The animator is thus enabled to obtain a full animation of a breaking wave while controlling the shape and the timing of the breaking. An additional advantage of the method is that it provides a significantly faster method for obtaining the full 3D breaking wave evolution compared to starting the simulation at an early stage and using solely the 3D Navier-Stokes equations. We present a series of 2D and 3D breaking wave animations to demonstrate the power of the method.

Supplementary Material

JPG File (p315-mihalef.jpg)
ZIP File (p325-menardais.zip)
Supplemental videos
MOV File (p315-mihalef.mov)
Supplemental video

References

[1]
{BCG87} Bell J. B., Colella P., Glaz H. M.: A second-order projection method for the incompressible Navier-Stokes equations. Journal of Computational Physics 85 (1987), 257--283.
[2]
{CKZL99} Chen G., Kharif C., Zaleski S., Li J.: Two-dimensional Navier-Stokes simulation of breaking waves. Physics of Fluids 11, 1 (1999), 121--133.
[3]
{CL94} Chen J., Lobo N.: Toward interactive-rate simulation of fluids with moving obstacles using the Navier-Stokes equations. Computer Graphics and Imagage Processing 57 (1994), 107--116.
[4]
{Vue4} www.e-onsoftware.com.
[5]
{EFFM02} Enright D., Fedkiw R., Ferziger J., Mitchell I.: A hybrid particle level set method for improved interface capturing. J. of Computational Physics 183 (2002), 83--116.
[6]
{EMF02} Enright D., Marschner S., Fedkiw R.: Animation and rendering of complex water surfaces. ACM TOG 21, 3 (2002), 736--744.
[7]
{FF01} Foster N., Fedkiw R.: Practical animation of liquids. Proceedings of SIGGRAPH 2001, 23--30 (2001).
[8]
{FM96} Foster N., Metaxas D.: Realistic animation of liquids. Graphical Models and Image Processing 58 (1996), 471--483.
[9]
{FM97} Foster N., Metaxas D.: Controlling fluid animation. Computer Graphics International (1997), 178--188.
[10]
{FR86} Fournier A., Reeves W. T.: A simple model of ocean waves. ACM SIGGRAPH 1986 (1986), 75--84.
[11]
{HW65} Harlow F. H., Welch J. E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Physics of Fluids 8 (1965), 212--218.
[12]
{KM90} Kass M., Miller G.: Rapid, stable fluid dynamics for computer graphics. ACM SIGGRAPH 1990 (1990), 49--57.
[13]
{MP89} Miller G., Pearce A.: Globular dynamics: a connected particle system for animating viscous fluids. Computers and Graphics 13, 3 (1989), 305--309.
[14]
{MTPS04} McNamara A., Treuille A., Popovic Z., Stam J.: Fluid control using the adjoint method. ACM Transactions on Graphics 23, 3 (2004).
[15]
{MWM87} Mastin G. A., Watterger P. A., Mareda J. F.: Fourier synthesis of ocean scenes. IEEE Computer Graphics and Applications 3 (1987), 16--23.
[16]
{OH95} O'Brien J., Hodgins J.: Dynamic simulation of splashing fluids. Computer Animation 95 (1995), 198--205.
[17]
{OS88} Osher S., Sethian J. A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79 (1988), 12--49.
[18]
{Pea86} Peachy D.: Modeling waves and surf. ACM SIGGRAPH 1986 (1986), 65--74.
[19]
{Per85} Perlin K.: An image synthesizer. Computer Graphics 3, 19 (1985), 287--296.
[20]
{RNGF03} Rasmussen N., Nguyen D., Geiger W., Fedkiw R.: Smoke simulation for large scale phenomena. Siggraph 2003, ACM TOG 22 (2003), 703--707.
[21]
{Sch80} Schachter B.: Long crested wave models. Computer Graphics and Imagage Processing 12 (1980), 187--201.
[22]
{SP00} Sussman M., Puckett E. G.: A coupled level set and volume of fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics 162 (2000), 301--337.
[23]
{Sta99} Stam J.: Stable fluids. ACM SIGGRAPH 1999 (1999), 121--128.
[24]
{Sus03} Sussman M.: A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. Journal of Computational Physics 187 (2003), 110--136.
[25]
{TB87} Ts' O P. Y., Barsky B. A.: Modeling and rendering waves: wave tracing using beta-splines and reflective and refractive texture mapping. ACM Transactions on Graphics 6, 3 (1987), 191--214.
[26]
{TDG00} Thon S., Dischler J. M., Ghazanfar-Pour D.: Ocean waves synthesis using a spectrum-based turbulence function. Computer Graphics International Proceedings (2000).
[27]
{Tes99} Tessendorf J.: Simulating ocean water. Siggraph Course Notes (1999).
[28]
{TFK*03} Takahashi T., Fujii H., Kunimatsu A., Hiwada K., Saito T., Tanaka K., Ueki H.: Realistic animation of fluid with splash and foam. Eurographics (2003).
[29]
{TMPS03} Treuille A., McNamara A., Popovic Z., Stam J.: Keyframe control of smoke simulations. ACM Transactions on Graphics 22, 3 (2003), 716--723.
[30]
{TPF95} Terzopoulos D., Platt J., Fleische K.: Heating and melting deformable models (from goop to glop). Graphics Interface 89 (1995), 219--226.
[31]
{Yab97} Yabe T.: Universal solver CIP for solid, liquid and gas. CFD Review (1997).

Cited By

View all
  • (2024)Fluid Control with Laplacian EigenfunctionsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657468(1-11)Online publication date: 13-Jul-2024
  • (2023)Efficient and high precision target‐driven fluid simulation based on spatial geometry featuresComputer Animation and Virtual Worlds10.1002/cav.220235:1Online publication date: 22-Aug-2023
  • (2021)Honey, I Shrunk the Domain: Frequency‐aware Force Field Reduction for Efficient Fluids OptimizationComputer Graphics Forum10.1111/cgf.14263740:2(339-353)Online publication date: 4-Jun-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation
August 2004
388 pages
ISBN:3905673142

Sponsors

Publisher

Eurographics Association

Goslar, Germany

Publication History

Published: 27 August 2004

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

SCA04
Sponsor:
SCA04: Symposium on Computer Animation 2004
August 27 - 29, 2004
Grenoble, France

Acceptance Rates

Overall Acceptance Rate 183 of 487 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)16
  • Downloads (Last 6 weeks)1
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Fluid Control with Laplacian EigenfunctionsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657468(1-11)Online publication date: 13-Jul-2024
  • (2023)Efficient and high precision target‐driven fluid simulation based on spatial geometry featuresComputer Animation and Virtual Worlds10.1002/cav.220235:1Online publication date: 22-Aug-2023
  • (2021)Honey, I Shrunk the Domain: Frequency‐aware Force Field Reduction for Efficient Fluids OptimizationComputer Graphics Forum10.1111/cgf.14263740:2(339-353)Online publication date: 4-Jun-2021
  • (2021)Kinetic-Based Multiphase Flow SimulationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.297235727:7(3318-3334)Online publication date: 1-Jul-2021
  • (2021)Real-time Simulation of Wave Roll Based on Shallow Wave Equation2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)10.1109/ICAICA52286.2021.9498031(959-962)Online publication date: 28-Jun-2021
  • (2020)Particle-based liquid control using animation templatesProceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation10.1111/cgf.14103(1-10)Online publication date: 6-Oct-2020
  • (2019)A robust volume conserving method for character-water interactionProceedings of the 18th annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation10.1145/3309486.3340244(1-12)Online publication date: 26-Jul-2019
  • (2017)Fluxed animated boundary methodACM Transactions on Graphics10.1145/3072959.307359736:4(1-8)Online publication date: 20-Jul-2017
  • (2016)Simulation and control of breaking waves using an external force modelComputers and Graphics10.1016/j.cag.2016.03.00357:C(102-111)Online publication date: 1-Jun-2016
  • (2015)A perceptual control space for garment simulationACM Transactions on Graphics10.1145/276697134:4(1-10)Online publication date: 27-Jul-2015
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media