skip to main content
article
Free Access

High-speed local area networks and their performance: a survey

Published:01 June 1991Publication History
Skip Abstract Section

Abstract

At high data transmission rates, the packet transmission time of a local area network (LAN) could become comparable to or less than the medium propagation delay. The performance of many LAN schemes degrades rapidly when the packet transmission time becomes small comparative to the medium propagation delay. This paper introduces LANs and discusses the performance degradation of LANs at high speeds. It surveys recently proposed LAN schemes designed to operate at high data rates, including their performance characteristics desirable in LAN medium access protocols are identified and discussed. The paper serves as a tutorial for readers less familiar with local computer communication networks. It also serves as a survey of the state-of-the-art LANs.

References

  1. ABEYSUNDARA, B. W., AND KAMAL, A. E. 1989. Z-Net: A dual bus fiber-optic LAN using active and passive switches. In Proceedings of the IEEE INFOCOM Conference. pp. 19-27.Google ScholarGoogle Scholar
  2. ACAMPO~A, A. S. 1987. A multichannel multihop local lightwave network. In Proceedings of the IEEE GLOBECOM Conference. pp. 1459-1467.Google ScholarGoogle Scholar
  3. ACAMPORA, A. S., AND KAROL, M. J. 1989. An overview of lightwave packet networks. {EEE Network Mag. 3, 1 (Jan.), 29-41Google ScholarGoogle Scholar
  4. ACAMPORA, A. S., KAROL, M. J., AND HLUCHYJ, M. G. 1987. Terabit lightwave networks: The multihop approach. AT&T Tech. J. 66, 6 (Nov/Dec), 21-34.Google ScholarGoogle Scholar
  5. ACAMPORA, A. S., KAROL, M. J., AND HLUCHYJ, M. G. 1988. Multihop lightwave networks: A new approach to achieve terabit capabilities. In Proceedings of the IEEE International Communication Conference. pp. 1478-1484.Google ScholarGoogle Scholar
  6. BORaONOVO, F., AND CADORIN, E. 1987. HR4-Net: A hierarchical random-routing reliable and reconfigurable network for metropolitan area. In Proceedings of the IEEE INFOCOM Conference. pp. 320-326.Google ScholarGoogle Scholar
  7. BORGONOVO, F., AND FRATTA, L. 1987. The S- ALOHA throughput of a tree-topology. In Proceedings of the IF1P TC 6/WG 6.4 International In-Depth Symposium on Local Communications Systems: LAN and PBX (Toulouse, France, Nov. 26-28, 1986), J. P. Cabanel, G. Pujolle, and A. Danthine, Eds. North-Holland Publishing Co., The Netherlands, pp. 401-410.Google ScholarGoogle Scholar
  8. BUDRIKIS, Z. L., HULLET, J. L., NEWMAN, R. M., ECONOMOU, D., FOZDAR, F. M., AND JEFFERY, e. D. 1986. QPSX: A queue packet and synchronous circuit exchange. In Proceedings of the 8th International Conference Computer Communications. (Munich). Elsevier Science, pp. 288-293.Google ScholarGoogle Scholar
  9. Bux, W. 1981. Local-area subnetworks: A performance comparison. IEEE Trans. Commun. COM-29, 10 (Oct.), 1465-1473.Google ScholarGoogle Scholar
  10. Bux, W. 1984. Performance issues in local-area networks. IBM Syst. J. 23, 4, 351-374.Google ScholarGoogle Scholar
  11. CHLAMTAC, I., AND GANZ, A. 1988. Design and analysis of very high-speed network architectures IEEE Trans. Commun. 36, 3 (Mar.), 252-262.Google ScholarGoogle Scholar
  12. CLARK, D. D., POGRAN, K. T., AND REED, D. P. 1978. An introduction to local area networks. Proc. IEEE. 66, ll (Nov.), 1497-1516.Google ScholarGoogle Scholar
  13. CONTI, M., GREGORI, E., AND LENZINI, L. 1990. DQDB under heavy load: Performance evaluation and fairness analysis. In Proceedings of the IEEE INFOCOM Conference. pp. 313-320.Google ScholarGoogle Scholar
  14. DAvms, P., AND GHANI, F. A. 1983. Access protocols for an optical-fibre ring network. Computer Commun. 6, 4 (Aug.), 185-191.Google ScholarGoogle Scholar
  15. Du, D. H. C., CHANG, S. P., ANn SUSBARO, G. 1989. Multiple packet multiple channel CSMA/CD protocols for local area networks. In Proceedings of the IEEE INFOCOM Conference. pp. 163-172.Google ScholarGoogle Scholar
  16. DYKEMAN, D., AND BUX, W. 1988. Analysis and tuning of the FDDI media access control protocol. IEEE J. Selected Areas Commun. 6, 6 (Jul.), 997-1010.Google ScholarGoogle Scholar
  17. EBERT, I. G. 1984. The evolution of integrated access towards the ISDN. IEEE Commun. Mag. 22, 4 (Apr.), 6-11.Google ScholarGoogle Scholar
  18. FILIPIAK, J. 1989. Access protection for fairness in a distributed queue dual bus metropolitan area network. In Proceedings of the International Communications Conference. pp. 635-639.Google ScholarGoogle Scholar
  19. FINE, M., AND TOBAGI, F. A. 1984. Demand assignment multiple access schemes in broadcast bus local area networks. IEEE Trans. Comp. C-33, 12 (Dec.), 1130-1159.Google ScholarGoogle Scholar
  20. FINLEY, JR., M. R. 1984. Optical fibres in local area networks. IEEE Commun. Mag. 22, 8 (Aug.), 22-35.Google ScholarGoogle Scholar
  21. GERLA, M., AND WANG, G. S. 1987. Performance models of Buzz-net. A hybrid fiber optics LAN. In Proceedings oflNFOCOM, pp. 298-306.Google ScholarGoogle Scholar
  22. GERLA, M., RODRIGUES, P., AND YEH, C. 1983. Buzz-net: A hybrid random access/virtual token local network. In Proceedings of the GLOBECOM. pp. 1509-1513.Google ScholarGoogle Scholar
  23. GERLA, M., RODRIGUES, P., AND YEH, C. 1984. U- Net: A unidirectional fiber bus network. In FOC/LAN 84, 8th International Fiber Optics Communications and Local Area Networks Exposition (Las Vegas, Nev., Sept.). Information Gatekeepers, Inc., pp. 295-299.Google ScholarGoogle Scholar
  24. GERLA, M., RGDRIGUES, P., AND YEH, C. W. 1985. Token-based protocols for high-speed opticalfiber networks. IEEE J. Lightwave Tech. LT-3, 3 (Jun.), 449-466.Google ScholarGoogle Scholar
  25. GERLA, M., WANG, G. S., AND ROnRIGUES, P. 1987. Buzz-net: A hybrid token/random access LAN. IEEE J. Selected Areas Commun. SAC-5, 6 (Jul.), 977-988.Google ScholarGoogle Scholar
  26. GERLA, M., AND FRATTA, L. 1988a. Tree structured fiber optics MANs. IEEE J. Selected Areas Commun. 6, 6 (Jul.), 934-942.Google ScholarGoogle Scholar
  27. GERLA, M, ANn F~TTA, L. 1988b. Fiber optics trees for metropolitan distribution. In FOC/LAN 88, 12th International Optic Communications and Local Area Networks Exposition. (Atlanta, Ga., Sept.). pp. 312-317.Google ScholarGoogle Scholar
  28. GITMAN, I., AND OCCUIOGROSSO, B. J. 1986. LAN vs. PABX. In Local Area and Multiple Access Networks. Advances in Telecommunication Networks Series. R. L. Pickholtz, Ed. Computer Science Press, Rockville, Md., pp. 251-288. Google ScholarGoogle Scholar
  29. GOODMAN, M. S., KGBRINSKI, H., AND LOH, K. W. 1986. Application of wavelength division multiplexing to communication network architectures. In Proceedings of the IEEE International Communications Conference. pp. 931- 933.Google ScholarGoogle Scholar
  30. HABBAB, I. M. I., KAVEHRAD, M., AND SUNDBERG, C. E. W. 1987. Protocols for very high speed optical fiber passive star LANs. In Proceedings of the IEEE International Communications Conference. pp. 1593-1600.Google ScholarGoogle Scholar
  31. HAFNER, E. R., NENADAL, Z., AND TSCHANZ, M. 1974. A digital loop communication system. IEEE Trans. Commun. COM-22, 6 (Jun.), 877-881.Google ScholarGoogle Scholar
  32. HAHNE, E. L., CHOUDHURY, A. K., ^ND MAXEM- CHUK, N. F. 1990. Improving the fairness of distributed-queue-dual-bus networks. In Proceedings of the IEEE INFOCOM Conference. pp. 175-184.Google ScholarGoogle Scholar
  33. HALSALL, F. 1988. Data Communications: Computer Networks and OSI. 2nd ed. Addison-Wesley Publishing Co. Great Britain. Google ScholarGoogle Scholar
  34. HASSANEIN, H. S., AND KAMAL, A. E. 1990. On the behavior of Hubnet with applications to priority implementation. In Proceedings of the IEEE INFOCOM Conference. pp. 1188-1195.Google ScholarGoogle Scholar
  35. HENRY, P. S., 1985. Lightwave primer. IEEE J. Quantum Elec. QE-21, 12, (Dec.), 1862-1879.Google ScholarGoogle Scholar
  36. HENRY, P. S., 1988. Very-high-capacity lightwave networks. In Proceedings of the IEEE International Communicatwns Conference. pp. 1206- 1209.Google ScholarGoogle Scholar
  37. HENRY, P. S., 1989. High-capacity lightwave local area networks. IEEE Commun. Mag. 27, 10 (Oct.), 20-26.Google ScholarGoogle Scholar
  38. HOPPER, A., AND NEEDHAM, R. M. 1988. The Cambridge fast ring networking systme. IEEE Trans. Comput. 37, 10, (Oct.), 1214-1223. Google ScholarGoogle Scholar
  39. IEEE COMPUTER SOCIETY 1985a. Carrier sense multiple access with collision detect (CSMA/CD) access method and physical layer specifications. ANSI/IEEE 802.3 (ISO/DIS 8802/3). IEEE Press, New York.Google ScholarGoogle Scholar
  40. IEEE COMPUTER SOCmTY 1985b. Token-passing bus access method and physical layer specifications. ANSI/IEEE 802.4 (ISO/DIS 8802/4). IEEE Press, New York.Google ScholarGoogle Scholar
  41. IEEE COMPUTER SOCIETY 1985C. Token ring access method and physical layer specifications. ANSI/IEEE 802.5 (ISO/DIS 8802/5). IEEE Press, New York.Google ScholarGoogle Scholar
  42. IELAPI, V., MARANO, S., AND VOLPENTESTA, A. 1987. A simulation study for a tree local area network with concurrent transmissions. In Proceedings of the IFIP TC 6/WG 6.4 International In-Depth Symposium on Local Communications Systems: LAN and PBX. (Toulouse, France, Nov. 26-28, 1986), Cabanel, G. Pujolle, A. Danthine, eds. North-Holland Publishing Co., The Netherlands, pp. 437-450.Google ScholarGoogle Scholar
  43. Josm, S. P. 1986. High performance networks: A focus on the fiber distributed data interface FDDI) standard. IEEE MICRO 6, 3 (Jun.), 8-14. Google ScholarGoogle Scholar
  44. Josm, S., AND IYER, V. 1984. New standards for local networks push upper limits for lightwave data. Data Commun. 6, 3 (Jul.), 127-138.Google ScholarGoogle Scholar
  45. KAMAL, A. E. 1987. Star local area networks: A performance study. IEEE Trans. Comp. C-36, 4 (Apr.), 483-499. Google ScholarGoogle Scholar
  46. KAMAL, A. E. 1990a. On the use of multiple tokens on ring networks. In Proceedings of the IEEE INFOCOM Conference. pp. 15-22.Google ScholarGoogle Scholar
  47. KAMAL, A. E. 1990b. An algorithm for the efficient utilization of bandwidth in the slotted ring. In Proceedmgs of the IEEE Second Workshop on Future Trends in Distributed Systems in the 90s (Cairo, Egypt). pp. 178-184.Google ScholarGoogle Scholar
  48. KAMAL, A. E. AND ABEYSUNDARA, B. W. 1989. X- Net: A dual bus fiber-optic LAN using active switches. In Proceedings of the ACM SIG- COMM 89 Symposium. pp. 72-82. Google ScholarGoogle Scholar
  49. KAMAL, A. E., AND I-IAMACHER, V. C. 1989. Approximate analysis of nonexhaustive multiserver polling systems with applications to local area networks. Comput. Networks ISDN Syst. 17, 1 (Jun.), 15-27. Google ScholarGoogle Scholar
  50. KAMAL, A. m., AND HAMACHEI~, V. C. 1990. Utilizing bandwidth sharing in the slotted ring. lEEK Trans. Comp. 39, 3 (Mar.), 289-299. Google ScholarGoogle Scholar
  51. KAMINOW, I. P. 1989a. Photonic multiple-access networks: Topologies. AT&T Tech. J. 68, 2 (Mar/Arp.), 61-71.Google ScholarGoogle Scholar
  52. KAMINOW, I. P. 1989b. Photonic multiple-access networks: Routing and multiplexing. AT&T T~e,~. J 6g, 2 (Mar/Apr.).Google ScholarGoogle Scholar
  53. KAROL, M. J. 1988. Optical interconnection using shufflenet multihop networks in multi-conected ring topologies. In Proceedings of the ACM SIGCOMM 88 Symposium (Aug.). pp. 25-34. Google ScholarGoogle Scholar
  54. KAUR, H., AND CAMPBELL, G. 1990. DQDB: An access delay analysis. In Proceedings of the IEEE INFOCOM Conference. pp. 630-635.Google ScholarGoogle Scholar
  55. KING, P. J. B., ANn MITRAm, I. 1987. Modeling a slotted ring local area network. IEEE Trans. Comp. C-36, 5 (May), 554-561. Google ScholarGoogle Scholar
  56. KLESSm, R. W. 1986. Overview of metropolitan area networks. IEEE Commun Mag. 24, 1 (Jan.), 9-15.Google ScholarGoogle Scholar
  57. KOSTAS, D. J. 1984. Transition to ISDN: An overview. IEEE Commun. Mag. 22, I (Jan), 11-17.Google ScholarGoogle Scholar
  58. LEE, E. S., AND BOULTON, P. I. P. 1983. The principles and performance of Hubnet: A 50 Mbit/s glass fibre local are network. IEEE J. Selected Areas Commun. SAC-l, 5 (Nov.), 711-720.Google ScholarGoogle Scholar
  59. LEE, E. S., BOULTON, P. I. P., AND THOMSON, B. W. 1988. HUBNET performance measurement. IEEE J. Selected Areas Commun. 6, 6 (Jul.), 1025-1032.Google ScholarGoogle Scholar
  60. Lm~, J. O. 1982. High-speed operation of broadcast local networks. In Proceedings of the IEEE International Communications Conference. pp. 6C.1.1-6C 1.5.Google ScholarGoogle Scholar
  61. LIMB, J. O. 1984. On fiber optic taps for local area networks. In Proceedings of the IEEE International Commumcations Conference. pp. 1130- 1136.Google ScholarGoogle Scholar
  62. LIMB, J. O., AND FLORES, C. 1982. Description of Fasnet: A unidirectional local-area communications network. Bell Syst. Tech. J. 61, 7 (Sept.), 1413-1440.Google ScholarGoogle Scholar
  63. Lru, M. T. 1978. Distributed loop computer networks. In Advances in Computers, M. C. Yovits, ed. Academic Press, New York, vol. 17, pp. 163-221.Google ScholarGoogle Scholar
  64. LIu, M. T., HmAL, W., AND GROOMES, B. H. 1982. Performance evaluation of channel access protocols for local computer networks. In Proceed- ~ngs of the IEEE COMPCON Fall 82. pp. 417-426.Google ScholarGoogle Scholar
  65. MARANO, S., AND VOLPENTESTA, A. 1987. Performance evaluation of Alberonet by simulation and theoretical analyses. In Proceedings of the IEEE INFOCOM Conference. pp. 1137-1147.Google ScholarGoogle Scholar
  66. MARHIC, M. E., AND TOEAGI, F. A. 1986. Experimentation with a fibre optic implementation of Expressnet. In Proceedings of the 4th European Fibre Opttc Communicattons& Local Area Networks ( EFOC/LAN) Exposition, (Amsterdam, June). Information Gatekeepers, Inc., pp. 244-254.Google ScholarGoogle Scholar
  67. MARSON, M. A., AND ROFFINELLA, D. 1983. Multichannel local area network protocols. IEEE J. Selected Area~ Commum g'AC1, 5 (Nov_), 885-897.Google ScholarGoogle Scholar
  68. MATSUSHITA, S., KAWAI, K., AND UCHIDA, I-I 1985. Fiber-optic devices for local area network application. IEEE J. L~ghtwave Tech. LT-3, 3 (June), 544-555.Google ScholarGoogle Scholar
  69. MAxEMCHUK, N. F. 1985a. Regular mesh topologies in local and metropolitan area networks. AT&T Tech. J. 64, 7 (Sept.), 1659-1685.Google ScholarGoogle Scholar
  70. MAXEMCHUK, N. F. 1985b The Manhatten street network. In Proceedings of the IEEE GLOBE- COM Conference. pp. 255-261.Google ScholarGoogle Scholar
  71. MAXEMCHUK, N. F. 1987a. Random access strategies for fiber-optic networks. In Proceedings of the INFOCOM Conference. pp. 307-311.Google ScholarGoogle Scholar
  72. MAXEMCHUK, N. F. 1987b. Routing in the Manhatten street network. IEEE Trans. Commun. COM-35, 5 (May), 503-512.Google ScholarGoogle Scholar
  73. MAXEMCHUK, N. F. 1988. Twelve random access strategies for fiber optic networks. IEEE Trans. Commun. 36, 8 (Aug.), 942-950.Google ScholarGoogle Scholar
  74. MERMET-ALI, M. K., HAYES, J. F., ANn ELHAKEEM, A. K. 1988. Traffic analysis of a local area network with a star topology. IEEE Trans. Commun. 36, 6 (Jun.), 703-712.Google ScholarGoogle Scholar
  75. METCALFE, R. M., AND BOGGS, D. R. 1976. Ethernet: Distributed packet switching for local computer networks. Commun. ACM 19, 7 (Jul.), 395 -404. Google ScholarGoogle Scholar
  76. METZNER, J. J. 1985. A high efficiency acknowledgment protocol for the slotted Pierce ring. In Proceedings of lNFOCOM, pp. 333-339.Google ScholarGoogle Scholar
  77. MOLLENAUER, J. F. 1988. Standards for metropolitan area networks. IEEE Commun. Mag. 26, 4 (Apr.), 15-19.Google ScholarGoogle Scholar
  78. MORRIS, S., SUDA, T., AND N~UYEN, T. 1989. A Tree LAN with collision avoidance: Photonic switch design and simulated performance. Comput. Networks and ISDN Sys. 17, 2 (Jul.), 89-100. Google ScholarGoogle Scholar
  79. MUKHERJEE, B., AND MEDITCH, J. S. 1988a. The p~-persistent protocol for unidirectional broadcast bus networks. IEEE Trans. Commun. 36, 12 (Dec.), 1277-1286.Google ScholarGoogle Scholar
  80. MUKHERJEE, B., AND MEDITCH, J. S. 1988b. Integrating voice with the p,-persistent protocol for unidirectional broadcast bus networks. IEEE Trans. Commun. 36, 12 (Dec.), 1287-1295.Google ScholarGoogle Scholar
  81. MUKHERJI, U., MAXEMCHUK, N. F., Wu, C. W., AND SWARTZWELDER, J. C. 1988. Transmission format and receiver logic for random access strategies in a fiber-optic network. In Proceedings of the IEEE Computer Networking Symposium. pp. 82-86.Google ScholarGoogle Scholar
  82. MYERS, W. 1982. Toward a local network standard. IEEE Micro 2, 4 (Aug.), 28-45.Google ScholarGoogle Scholar
  83. NASSEHI, M. M., TOBAGI, F. A., AND MARmC, M. E. 1985. Fiber optic configurations for local area networks. IEEE J. Selected Areas Commun. SAC-3, 6 (Nov.), 941-949.Google ScholarGoogle Scholar
  84. NEWMAN, R. M., BUDRIKIS, Z. L., AND HULLET, J. L. 1988. The QPSX Man. IEEE Commun. Mag. 26, 4 (Apr.), 20-28.Google ScholarGoogle Scholar
  85. NEWMAN, R. M., AND HULLET, J. L. 1986. Distributed queueing: A fast and efficient packet access protocol for QPSX. In Proceedings of the 8th International Conference on Computer Communications, (Munich). Elsevier Science, pp. 294-299.Google ScholarGoogle Scholar
  86. PENNEY, B. K., AND BAGHDADI, A. A. 1979a. Survey of computer communications loop networks: Part 1. Computer Commun. 2, 4 (Aug.), 165-180.Google ScholarGoogle Scholar
  87. PENNEY, B. K., AND BAGHDADI, A. A. 1979b. Survey of computer communications loop networks: Part 2. Computer Commun. 2, 5 (Oct.), 224-241.Google ScholarGoogle Scholar
  88. PERSONICK, S. D. 1985. Protocols for fiber-optic local area networks. IEEE J. Lightwave Tech. LT-3, 3 (Jun.), 426-431.Google ScholarGoogle Scholar
  89. RAWSON, E. G., AND METCALFE, R. M. 1978. Fibernet: Multimode optical fibres for local computer networks. IEEE Trans. Commun. COM-26, 7 (Jul.), 983-990.Google ScholarGoogle Scholar
  90. RHODES, N. L. 1983. Interaction of network design and fiber optic component design in local area networks. IEEE J. Selected Areas Commun. SAC-l, 3 (Apr.), 489-492.Google ScholarGoogle Scholar
  91. RODRIGUES, P. A., FRATTA, L., AND GERLA, M. 1984. Token-less protocols for fiber optics local area networks. In Proceedings of the IEEE International Communicatmns Conference. pp. 1150-1153.Google ScholarGoogle Scholar
  92. Ross, F. E. 1986. FDDI: A tutorial. IEEE Commun. Mag. 24, 5 (May), 10-17.Google ScholarGoogle Scholar
  93. Ross, F. E. 1989. An overview of FDDI: The fiber distributed interface. IEEE J. Selected Areas Commun. 7, 7 (Sept.), 1043-1051.Google ScholarGoogle Scholar
  94. SACHS, S. R. 1988. Alternative local area network protocols. IEEE Commun. Mag. 26, 3 (Mar.), 25-45.Google ScholarGoogle Scholar
  95. SALTZER, J. H., CLARK, D. D., AND POGRAN, K. T. 1981. Why a ring? In Proceedings of the 7th IEEE Data Communications Symposium. pp. 211-217. Google ScholarGoogle Scholar
  96. SCHILL, A., AND ZIEHER, M. 1987. Performance analysis of the FDDI 100 Mbit/s optial token ring. In Proceedings of the IFIP TC 6/WG 6.4 International Workshop on High Speed Local Area Networks (HSLAN) (Aachen, Germany, Feb. 16-17) O. Spaniol and A. Danthine, eds., Elsevier Science, pp. 53-74.Google ScholarGoogle Scholar
  97. SCHMIDT, R. V., RAWSON, E. G., NORTON, JR., R. E., JACKSON, S. B., AND BAILEY, M. D. 1983. Fibernet II: A fiber optic Ethernet. IEEE J. Selected Areas Commun. SAC-l, 5 (Nov.), 702-711.Google ScholarGoogle Scholar
  98. SCHOLL, F. W., AND CODEN, M. H. 1988. Passive optical star systems for fiber optic local area networks. IEEE J. Selected Areas Commun. 6, 6 (Jul.), 913-923.Google ScholarGoogle Scholar
  99. SEVCIK, K. C., AND JOHNSON, M. J. 1987. Cycle time properties of the FDDI token ring protocol. IEEE Trans. Softw. Eng. SE-13, 3 (Mar.), 376-385. Google ScholarGoogle Scholar
  100. STALLINGS, W. 1984a. IEEE Project 802, Setting standards for local-area networks. COMPUT- ERWORLD, Feb. 13.Google ScholarGoogle Scholar
  101. STALLINGS, W. 1984b. Local network performance. IEEE Commun. Mag. 22, 2 (Feb.), 27-36.Google ScholarGoogle Scholar
  102. STALLINGS, W. 1984C. Local networks. Computmg Surveys 16, i (Mar.), 3-41. Google ScholarGoogle Scholar
  103. STALLINGS, W. 1985. Data and Computer Communications, Macmillan, New York. Google ScholarGoogle Scholar
  104. STALLINGS, W. 1986. A tutorial on the IEEE 802 local network standard. In Local Area and Multiple Access Networks. Advances in Telecommunication Networks Series. R L. Pickholtz, ed. Computer Scmnce Press, Rockville, Md., pp 1-30. Google ScholarGoogle Scholar
  105. STALLINGS, W. 1987. Handbook of Computer-communications Standards. Vol. 2, Local Network Standards. Macmillan, New' York. Google ScholarGoogle Scholar
  106. S~ONE, H. S. 1971. Parallel processing with the perfect shuffle. IEEE Trans Comp C-20, 2 (Feb.), 153-161.Google ScholarGoogle Scholar
  107. SUDA, T., AND MORRIS, S. 1989 Tree LANs with collision avoidance: Station and switch protocols. Comput. Networks lSDXSys 27.2 (Jul). 101-110. Google ScholarGoogle Scholar
  108. SUDA, T., MonRIs, S., AND GOTO. K. 1987. Tree LANs with collision avmdance: Protocol and switch architecture. In Proceedings of the JE~E GLOBECOM Conference. pp 1410-1414.Google ScholarGoogle Scholar
  109. TANaNEY, B., AND O'MAHONY, D. 1988. LocalArea Networks and Their Applications. Prentice Hall, UK., p. 33. Google ScholarGoogle Scholar
  110. TEMPLE, S. 1983. The design of the Cambridge fast ring. in Proceedings of the IFIP WG6.4/ University of Kent Workshop on Ring Technology based Local Area Networks. (Kent, U K., Sept. 28-30). Elsevier Science, pp. 79-88.Google ScholarGoogle Scholar
  111. TOBAGI, F. A., BORGONOVO, F., A~'D FRATTA, L. 1983. Expressnet: A high-performance integrated-services local area network IEEE J Selected Areas Commun SAC-f, 5 (Nov), 898-913.Google ScholarGoogle Scholar
  112. TOBAGI, F. A., AND FLNE, l~,I. 1983. Performance of unidirectional broadcast local area networks: Expressnet and Fasnet _fEEE J Selected Areas Commun. SAC-l, 5 (Nov.), 913-926.Google ScholarGoogle Scholar
  113. TOBAGI, F A., AND HUNT, V. B. 1980. Performance analysis of carrier sense multiple access with colhsion detection Comput .~etrtorks 4 (Oct.), 245-259.Google ScholarGoogle Scholar
  114. TSEr~G, C., AND CHEX, B 1983 D-Net, A new scheme for h~gh data rate optical local area networks. JEEE J. Selected Areas Commun SAC4, 3 (Apr.), 493-499Google ScholarGoogle Scholar
  115. WAOXER, S S 1987 Optical amplifier apphcatmns m fiber optic local networks. IEEE Trans Cornmun COM-35, 4 (Apr0, 419-426.Google ScholarGoogle Scholar
  116. WEnXLI, M A. 1986. The chmces in designing a fiber-optic network Data Commun 15 (Jun), 167-175.Google ScholarGoogle Scholar
  117. Wmx~s, .M V. ~_x-n W~ZLZa, D J 1979 The Cambmdge digital communication rang In Proceedings of the LocoJ Area Comm:z:zc~rzons .~etwork Symposzum (Boston. Mass . May). pp 47-81Google ScholarGoogle Scholar
  118. WoxG. d. W 1989 ~roughput of DQDB networks under heax?- load In Proceedings of the 7th Annual European Fzbre Ophc Cornrnunzcat~ons & Local Area .~et~orks (EFOC LA.V) Exposztmn (Amsterdam, June), IGI Europe Inc., pp. 146-151Google ScholarGoogle Scholar
  119. Xu, M., Axp HzRzoG, J H. 1988. Concurrent token ring protocol In Proceedings of the tEEE INFOCOM pp. 145-154Google ScholarGoogle Scholar
  120. YEM~NI, Y. 1983. Tinkernet: Or, is there life between LANs and PBXs? In Procee&ngs of the IEEE InternationaI Communicattons Conference. pp 1501-1505Google ScholarGoogle Scholar
  121. ZAFmOX~-\-UKOTIC, *{., NIEMEGEERS, I. G., AND VXLK, D. S. 1988. Performance analysis of slotted ring protocols m HSLANs IEEE J. Selected Areas Commun. 6, 6 (Jul.), 1011-1024.Google ScholarGoogle Scholar
  122. Zr_~r_~ER~XN. H. 1980. OSI reference model: The ISO model of architecture for open systems interconnection. JEEE Trans. Commun. COM- 28, 4 (Apr.), 212-219.Google ScholarGoogle Scholar

Index Terms

  1. High-speed local area networks and their performance: a survey

            Recommendations

            Reviews

            William W. Oblitey

            The authors survey the performance degradation of LANs with respect to the normalized medium propagation delay. They discuss various schemes under the broad categories of the bus, ring, star, tree, and multichannel topology LANs. For each LAN scheme, the authors discuss its maximum achievable channel utilization and address the advantages and disadvantages of employing it. This paper is different from other related papers on LAN performance in that it concentrates on recently proposed LAN schemes that are designed to operate at high data rates. It may be accepted by the networking community as an updated version of these LAN performance papers. The authors give the final mathematical equations for the maximum achievable channel utilization result of the various protocols and spare the reader their derivations.

            Access critical reviews of Computing literature here

            Become a reviewer for Computing Reviews.

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader