skip to main content
10.1145/1065167.1065185acmconferencesArticle/Chapter ViewAbstractPublication PagespodsConference Proceedingsconference-collections
Article

Privacy-enhancing k-anonymization of customer data

Published:13 June 2005Publication History

ABSTRACT

In order to protect individuals' privacy, the technique of k-anonymization has been proposed to de-associate sensitive attributes from the corresponding identifiers. In this paper, we provide privacy-enhancing methods for creating k-anonymous tables in a distributed scenario. Specifically, we consider a setting in which there is a set of customers, each of whom has a row of a table, and a miner, who wants to mine the entire table. Our objective is to design protocols that allow the miner to obtain a k-anonymous table representing the customer data, in such a way that does not reveal any extra information that can be used to link sensitive attributes to corresponding identifiers, and without requiring a central authority who has access to all the original data. We give two different formulations of this problem, with provably private solutions. Our solutions enhance the privacy of k-anonymization in the distributed scenario by maintaining end-to-end privacy from the original customer data to the final k-anonymous results.

References

  1. J. O. Achugbue and F. Y. Chin. The effectiveness of output modification by rounding for protection of statistical databases. INFOR, 17(3):209--218, 1979.]]Google ScholarGoogle ScholarCross RefCross Ref
  2. N. Adam and J. Worthmann. Security-control methods for statistical databases: a comparative study. ACM Computing Survey, 21(4):515--556, 1989.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. C. Aggarwal and P. S. Yu. A condensation approach to privacy preserving data mining. In Proceedings of 9th International Conference on Extending Database technology. Springer, 2004.]]Google ScholarGoogle ScholarCross RefCross Ref
  4. G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu. k-anonymity: Algorithms and hardness. Under review, 2004.]]Google ScholarGoogle Scholar
  5. D. Agrawal and C. Aggarwal. On the design and quantification of privacy preserving data mining algorithms. In Proceedings of 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 247--255, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of 19th ACM SIGMOD Conference on Management of Data, pages 439--450. ACM Press, May 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital goods. In Advances in Cryptology - Proceedings of EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 119--135. Springer-Verlag, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In Proceedings of 21st International Conference on Data Engineering, 2005.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. L. Beck. A security mechanism for statistical databases. ACM Transactions on Database Systems, 5(3):316--338, September 1980.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. Boneh. The decision Diffie-Hellman problem. In Algorithmic Number Theory, Third International Symposium, volume 1423 of Lecture Notes in Computer Science, pages 48--63. Springer-Verlag, 1998.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. F. Y. Chin and G. Ozsoyoglu. Auditing and inference control in statistical databases. IEEE Transactions on Software Engineering, SE-8(6):113--139, April 1982.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. Dalenius. Finding a needle in a haystack-or identifying anonymous census record. Journal of Official Statistics, 2(3):329--336, 1986.]]Google ScholarGoogle Scholar
  13. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Advances in Cryptology - Proceedings of CRYPTO 89, volume 435 of Lecture Notes in Computer Science, pages 307--315. Springer-Verlag, 1990.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. I. Dinur and K. Nissim. Revealing information while preserving privacy. In Proceedings of 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 202--210. ACM Press, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In Advances in Cryptology - Proceedings of CRYPTO 84, pages 10--18, 1985.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining. In Proceedings of 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 211--222. ACM Press, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining of association rules. In Proceedings of 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 217--228. ACM Press, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure applications of Pedersen's distributed key generation protocol. In CT-RSA 2003, volume 2612 of Lecture Notes in Computer Science, pages 373--390, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. O. Goldreich. Foundations of Cryptography, volume 2. Cambridge University Press, 2004.]] Google ScholarGoogle ScholarCross RefCross Ref
  20. M. Kantarcioglu and C. Clifton. Privacy preserving distributed mining of association rules on horizontally partitioned data. In ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 639--644. ACM, 2002.]]Google ScholarGoogle Scholar
  21. H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving properties of random data perturbation techniques. In Proceedings of 3rd IEEE International Conference on Data Mining, Florida, Nov 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. M. Kleinberg, C. H. Papadimitriou, and P. Raghavan. Auditing boolean attributes. In Proceedings of 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 86--91, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryptology, 15(3):177--206, 2002.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In Proceedings of 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Paris, France, June 2004.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Reiss. Practical data swapping: The first steps. ACM Transactions on Database Systems, 9(1):20--37, 1984.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Samarati. Protecting respondent's privacy in microdata release. IEEE Transactions on Knowledge and Data Engineering, 13(6):1010--1027, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Samarati and L. Sweeney. Generalizing data to provide anonymity when disclosing information (abstract). In Proceedings of 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, page 188. ACM Press, 1998.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612--613, 1979.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Shoshani. Statistical databases: Characteristics, problems and some solutions. In Proceedings of 8th International Conference on Very Large Data Bases, pages 208--222, 1982.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. L. Sweeney. Guaranteeing anonymity when sharing medical data, the datafly system. In Proceedings, Journal of the American Medical Informatics Association, 1997.]]Google ScholarGoogle Scholar
  31. L. Sweeney. Achieving k-anonymity privacy protection using generalization and suppression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10(5):571--588, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. L. Sweeney. k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl-Based Syst., 10(5):557--570, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Traub, Y. Yemini, and H. Wozniakowksi. The statistical security of a statistical database. ACM Transactions on Database Systems, 9(4):672--679, 1984.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically partitioned data. In Proceedings of 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 639--644, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over vertically partitioned data. In Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 206--215. ACM Press, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    PODS '05: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems
    June 2005
    388 pages
    ISBN:1595930620
    DOI:10.1145/1065167
    • General Chair:
    • Georg Gottlob,
    • Program Chair:
    • Foto Afrati

    Copyright © 2005 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 13 June 2005

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • Article

    Acceptance Rates

    Overall Acceptance Rate642of2,707submissions,24%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader