skip to main content
10.1145/1068009.1068077acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
Article

A multi-objective evolutionary approach to peptide structure redesign and stabilization

Published: 25 June 2005 Publication History

Abstract

The prediction of the native structures of proteins, the so-called protein folding problem, is a NP hard multi-minima optimization problem for which to date no routine solutions exist. Using an evolutionary approach we have addressed a problem that is related to protein folding though much simpler: the computational improvement of small proteins or peptides with respect to stability and biological function. The solution of this problem is relevant for the life sciences, e.g. because it would help to optimize peptide drugs.In a first experiment we used the proposed algorithm to stabilize a previously destabilized mutant of the otherwise stable folding Villin Headpiece. The algorithm generated amongst others a sequence that reverted the destabilizing mutation and introduced a second mutation. In terms of the used model this second mutation resulted in a more stable peptide than the original Villin Headpiece.

References

[1]
C. B. Anfinsen. Principles that govern the folding of protein chains. Science., 181:223--30, 1973.
[2]
T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, 1996.
[3]
D. Bashford and K. Gerwert. Electrostatic Calculations of the pKa Values of Ionizable Groups in Bacteriorhodopsin. J. Mol. Biol., 224:473--486, 1992.
[4]
H. J. C. Berendsen, D. van der Spoel, and R. Drunen. GROMACS: A message-passing parallel molecular dynamics implementation. Comp. Phys. Comm., 91:43--56, 1995. http://www.gromacs.org.
[5]
H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, and I. N. S. and P. E. Bourne. The Protein Data Bank. Nucleic. Acids. Res., 28:235--42, 2000.
[6]
H.-J. Böhm, G. Klebe, and H. Kubinyi. Wirkstoffdesign. Spektrum Akademischer Verlag, Heidelberg, Germany, 1996.
[7]
C. Branden and J. Tooze. Introduction to Protein Structure. Garland Publishing, New York, 2 edition, 1999.
[8]
T. E. Creighton. Proteins - Structures and Molecular Properties. W. H. Freeman and Company, New York, 1993.
[9]
I. de la Mata, J. L. Garcia, C. Gonzalez, M. Menendez, J. Canada, J. Jimenez-Barbero, and J. L. A. sensio. The impact of R53C mutation on the three-dimensional structure, stability, and DNA-binding properties of the human Hesx-1 homeodomain. Chembiochem., 3:726--40, 2002.
[10]
G. M. de Mori, G. Colombo, and C. Micheletti. Study of the Villin headpiece folding dynamics by combining coarse-grained Monte Carlo evolution and all-atom molecular dynamics. Proteins., 58:459--71, 2005.
[11]
K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons, Ltd., Baffins Lane, Chichester, West Sussex, England, 2001.
[12]
A. R. Fersht. Nucleation mechanisms in protein folding. Curr. Opin. Struct. Biol., 7:3--9, 1997.
[13]
B. S. Frank, D. Vardar, D. A. Buckley, and C. J. McKnight. The role of aromatic residues in the hydrophobic core of the villin headpiece subdomain. Protein. Sci., 11:680--7, 2002.
[14]
A. Globus, J. Lawton, and T. Wipke. Automatic molecular design using evolutionary techniques. Nanotechnology, 10:290--299, 1999.
[15]
G. Goh and J. A. Foster. Evolving molecules for drug design using genetic algorithms. In D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), pages 27-33, Las Vegas, Nevada, USA, 2000. Morgan Kaufmann.
[16]
H. Hardy and P. R. Skolnik. Enfuvirtide, a new fusion inhibitor for therapy of human immunodeficiency virus infection. Pharmacotherapy., 24:198--211, 2004.
[17]
B. Honig and A. Nicholls. Classical electrostatics in biology and chemistry. Science., 268:1144--9, 1995.
[18]
S. J. Hubbard and J. M. Thornton. NACCESS, Computer Program, Department of Biochemistry and Molecular Biology. University College London, 1993.
[19]
I. A. Hubner, M. Oliveberg, and E. I. Shakhnovich. Simulation, experiment, and evolution: understanding nucleation in protein S6 folding. Proc. Natl. Acad. Sci. U. S. A., 101:8354--9, 2004.
[20]
B. Kuhlman, G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard, and D. Baker. Design of a novel globular protein fold with atomic-level accuracy. Science., 302:1364--8, 2003.
[21]
M. Lei, M. Yang, and S. Huo. Intrinsic versus mutation dependent instability/flexibility: a comparative analysis of the structure and dynamics of wild-type transthyretin and it pathogenic variants. J. Struct. Biol., 148:153--68, 2004.
[22]
Y. Levy, S. S. Cho, T. Shen, J. N. Onuchic, and P. G. Wolynes. Symmetry and frustration in protein energy landscapes: a near degeneracy resolves the Rop dimer-folding myster y. Proc. Natl. Acad. Sci. U. S. A., 102:2373--8, 2005.
[23]
E. Lindahl, B. Hess, and D. van der Spoel. Gromacs 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Mod., 7:306--317, 2001.
[24]
A. Liwo, M. Khalili, and H. A. Scheraga. Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. Proc. Natl. Acad. Sci. U. S. A., 102:2362--7, 2005.
[25]
C. J. McKnight, D. S. Doering, P. T. Matsudaira, and P. S. Kim. A thermostable 35-residue subdomain within villin headpiece. J. Mol. Biol., 260:126--34, 1996.
[26]
K. L. Morrison and G. A. Weiss. Combinatorial alanine-scanning. Curr. Opin. Chem. Biol., 5:302--7, 2001.
[27]
J. Moult, K. Fidelis, A. Zemla, and T. Hubbard. Critical assessment of methods of protein structure prediction (CASP): round IV. Proteins., Suppl 5:2--7, 2001.
[28]
C. A. Rohl, C. E. Strauss, D. Chivian, and D. Baker. Modeling structurally variable regions in homologous proteins with rosetta. Proteins., 55:656--77, 2004.
[29]
J. Schonbrun, W. J. Wedemeyer, and D. Baker. Protein structure prediction in 2002. Curr. Opin. Struct. Biol., 12:348--54, 2002.
[30]
E. I. Shakhnovich. Modeling protein folding: the beauty and power of simplicity. Fold. Des., 1:R50--4, 1996.
[31]
S. K. Sia, P. A. Carr, A. G. Cochran, V. N. Malashkevich, and P. S. Kim. Short constrained peptides that inhibit HIV-1 entry. Proc. Natl. Acad. Sci. U. S. A., 99:14664--9, 2002.
[32]
D. Sitkoff, K. A. Sharp, and B. Honig. Correlating solvation free energies and surface tensions of hydrocarbon solutes. Biophys. Chem., 51:397--403; discussion 404--9, 1994.
[33]
J. F. Smothers, S. Henikoff, and P. Carter. Affinity selection from biological libraries. Science, 298:621--622, 2002.
[34]
R. Srinivasan and G. D. Rose. Ab initio prediction of protein structure using LINUS. Proteins., 47:489--95, 2002.
[35]
H. Toyobuku, Y. Sai, T. Kagami, I. Tamai, and A. Tsuji. Delivery of peptide drugs to the brain by adenovirus-mediated heterologous expression of human oligopeptide tr ansporter at the blood-brain barrier. J. Pharmacol. Exp. Ther., 305:40--7, 2003.
[36]
D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff, D. P. T. an, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen, and H. J. C. Berendsen. Gromacs User Manual version 3.2., 2004. http://www.gromacs.org.
[37]
S. Vijay-Kumar, C. E. Bugg, and W. J. Cook. Structure of ubiquitin refined at 1.8 A resolution. J. Mol. Biol., 194:531--44, 1987.
[38]
G. Vriend. WHAT IF: A molecular modeling and drug design program. J Mol Graph., 8:52--56, 1990.
[39]
Y. Xia and M. Levitt. Funnel-like organization in sequence space determines the distributions of protein stability and folding rate preferred by evolution. Proteins., 55:107--14, 2004.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '05: Proceedings of the 7th annual conference on Genetic and evolutionary computation
June 2005
2272 pages
ISBN:1595930108
DOI:10.1145/1068009
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 June 2005

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. evolutionary algorithm
  2. multi-objective optimization
  3. peptide design

Qualifiers

  • Article

Conference

GECCO05
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 343
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media