skip to main content
10.1145/1073368.1073379acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
Article

Particle-based simulation of granular materials

Published: 29 July 2005 Publication History

Abstract

Granular materials, such as sand and grains, are ubiquitous. Simulating the 3D dynamic motion of such materials represents a challenging problem in graphics because of their unique physical properties. In this paper we present a simple and effective method for granular material simulation. By incorporating techniques from physical models, our approach describes granular phenomena more faithfully than previous methods. Granular material is represented by a large collection of non-spherical particles which may be in persistent contact. The particles represent discrete elements of the simulated material. One major advantage of using discrete elements is that the topology of particle interaction can evolve freely. As a result, highly dynamic phenomena, such as splashing and avalanches, can be conveniently generated by this meshless approach without sacrificing physical accuracy. We generalize this discrete model to rigid bodies by distributing particles over their surfaces. In this way, two-way coupling between granular materials and rigid bodies is achieved.

References

[1]
{AT01} Aranson I. S., Tsimring L. S.: Continuum description of avalanches in granular media. Physical Review E 64 (2001), 020301.
[2]
{BA02} Baerentzen J. A., Aanaees H.: Generating signed distance fields from triangle meshes. IMM Technical Report, 21 (2002).
[3]
{Bar97} Baraff D.: An introduction to physically based modeling, course notes. ACM SIGGRAPH, 1997.
[4]
{BFA02} Bridson R., Fedkiw R., Anderson J.: Robust treatment of collisions, contact and friction for cloth animation. In SIGGRAPH 2002 Proceedings (2002), pp. 594--603.
[5]
{BW98} Baraff D., Witkin. A.: Large steps in cloth simulation. In SIGGRAPH 1998 Proceedings (1998), pp. 43--54.
[6]
{CLH96} Chanclou B., Luciani A., Habibi A.: Physical models of loose soils dynamically marked by a moving object. In Computer Animation (1996). pp. 27--35.
[7]
{CS79} Cundall P. A., Strack O. D. L.: A discrete numerical model for granular assemblies. Geotechnique 29, 1 (1979), 47--65.
[8]
{DC99} Desbrun M., Cani M.-P.: Space-time adaptive simulation of highly deformable substances. Tech. rep., INRIA, 1999.
[9]
{dG99} De Gennes P. G.: Granular matter: a tentative view. Reviews of Modern Physics 71 (1999), S374--S382.
[10]
{DR99} Dury C. M., Ristow G. H.: Competition of mixing and segregation in rotating cylinders. Physics of Fluids 11, 6 (1999), 1387--1394.
[11]
{GBF03} Guendelman E., Bridson R., Fedkiw R.: Nonconvex rigid bodies with stacking. ACM Trans. Graph. 22, 3 (2003), 871--878.
[12]
{HL98} Herrman H. J., Luding S.: Modeling granular media on the computer. Continuum Mech. Thermodyn. 10 (1998), 189--231.
[13]
{HMT01} Hadap S., Magnenat-Thalmann N.: Modeling dynamic hair as continuum. In Eurographics Proceedings. Computer Graphics Forum, Vol. 20, No. 3 (2001).
[14]
{ITF04} Irving G., Teran J., Fedkiw R.: Invertible finite elements for robust simulation of large deformation. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation (2004), pp. 131--140.
[15]
{JGD94} J. Ennis B., Green J., Davies R.: The legacy of neglect in the u.s. Chemical Engineering Progress 90 (1994), 32--43.
[16]
{JNB96} Jaeger H. M., Nagel S. R., Behringer R. P.: Granular solids, liquids, and gases. Reviews of Modern Physics 68, 4 (1996), 1259--1273.
[17]
{Lam91} Lambert J. D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, 1991.
[18]
{Lee94} Lee J.: Heap formation in two-dimensional granular media. Journal of Physics A 27 (1994).
[19]
{LH93} Lee J., Herrmann H. J.: Angle of repose and angle of marginal stability: molecular dynamics of granular particles. Journal of Physics A 26 (1993).
[20]
{LHM95} Luciani A., Habibi A., Manzotti E.: A multi-scale physical model of granular materials. In In Proceedings of Graphics Interface '95 (1995), pp. 136--146.
[21]
{LL86} Landau L. D., Lifshitz E. M.: Theory of Elasticity. Pergamon Books Ltd., 1986.
[22]
{LM93} Li X., Moshell J.: Modeling soil: Realtime dynamic models for soil slippage and manipulation. In SIGGRAPH 1993 Proceedings (1993), pp. 361--368.
[23]
{MCG03} Müller M., Charypar D., Gross M.: Particle-based fluid simulation for interactive applications. In ACM Symposium on Computer Animation (2003).
[24]
{Mir96} Mirtich B.: Fast and accurate computation of polyhedral mass properties. Journal of Graphics Tools 1, 2 (1996), 31--50.
[25]
{Mon94} Monaghan J.: Simulating free surface flows with sph. Journal of Computational Physics 110 (1994), 399--406.
[26]
{MP89} Miller G., Pearce A.: Globular dynamics: A connected particle system for animating viscous fluids. Computer and Graphics 13, 3 (1989), 305--309.
[27]
{MS01} Milenkovic V. J., Schmidl H.: Optimization-based animation. In SIGGRAPH 2001 Proceedings (2001), pp. 37--46.
[28]
{ON03} Onoue K., Nishita T.: Virtual sandbox. In Proceedings of Pacific Graphics 2003 (2003), pp. 252--262.
[29]
{PB93} Pöschel T., Buchholtz V.: Static friction phenomena in granular materials: Coulomb law versus particle geometry. Physical Review Letters 71, 24 (1993), 3963--3966.
[30]
{PB95} Pöschel T., Buchholtz V.: Molecular dynamics of arbitrarily shaped granular particles. Journal of Physics I France 5 (1995), 1431--1455.
[31]
{PTB*03} Premoze S., Tasdizen T., Bigler J., Lefohn A., Whitaker R.: Particle-based simulation of fluids. Computer Graphics Forum 22, 3 (2003).
[32]
{Ree83} Reeves W. T.: Particle systems - a technique for modeling a class of fuzzy objects. In Computer Graphics (Proc. of SIGGRAPH '83) (1983). vol. 17, pp. 359--376.
[33]
{RPBS99} Ramìrez R., Pöschel T., Brilliantov N. V., Schwager T.: Coefficient of restitution of colliding viscoelastic spheres. Physical Review E 60 (1999), 4465--4472.
[34]
{SDW96} Schäfer J., Dippel S., Wolf D. E.: Force schemes in simulations of granular materials. Journal of Physics 6 (1996).
[35]
{SOH99} Sumner R. W., O'Brien J. F., Hodgins J. K.: Animating sand, mud, and snow, Computer Graphics Forum 18, 1 (1999), 17--26.
[36]
{SP98} Schwager T., Pöschel T.: Coefficient of normal restitution of viscous particles and cooling rate of granular gases. Physical Review E 57, 1 (1998), 650--654.
[37]
{SvHSvS04} Snoeijer J. H., Van Hecke M., Somfai E., Van Saarloos W.: Packing geometry and statistics of force networks in granular media. Physical Review E 70 (2004).
[38]
{Ton91} Tonnesen D.: Modeling liquids and solids using thermal particles. In Proc. Graphics Interface (1991), pp. 255--262.
[39]
{TPF89} Terzopoulos D., Platt J., Fleisher K.: Heating and melting deformable models(from goop to glop). In Proc. Graphics Interface (1989), pp. 219--226.
[40]
{TPG99} Treece G. M., Prager R. W., Gee A. H.: Regularised marching tetrahedra: improved iso-surface extraction. Computers and Graphics 23, 4 (1999), 583--598.
[41]
{Tur92} Turk G.: Re-tiling polygonal surfaces. In SIGGRAPH 1992 Proceedings (1992), pp. 55--64.
[42]
{WB93} Walton O. R., Braun R. L.: Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters. In DOE/NSF Workshop on Flow of Particulates, Ithaca, NY, 29 Sep. - 1 Oct. 1993 (1993), vol. 29.
[43]
{WH94} Witkin A. P., Heckbert P. S.: Using particles to sample and control implicit surfaces. In SIGGRAPH 1994 Proceedings (1994), pp. 269--274.
[44]
{YKO96} Yoon H., Koshizuka S., Oka Y.: A particle gridless hybrid method for incompressible flows. Int. J. Numer. Meth. Fluids 29, 4 (1996).

Cited By

View all
  • (2025)Implicit Bonded Discrete Element Method with Manifold OptimizationACM Transactions on Graphics10.1145/371185244:1(1-17)Online publication date: 28-Jan-2025
  • (2025)Dynamic Change of Three-Dimensional Soil in Game SimulatorsProceedings of IEMTRONICS 202410.1007/978-981-97-4784-9_19(257-274)Online publication date: 25-Jan-2025
  • (2024)Multi-level Partition of Unity on Differentiable Moving ParticlesACM Transactions on Graphics10.1145/368798943:6(1-21)Online publication date: 19-Dec-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation
July 2005
366 pages
ISBN:1595931988
DOI:10.1145/1073368
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 July 2005

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

SCA05
Sponsor:
SCA05: Symposium on Computer Animation
July 29 - 31, 2005
California, Los Angeles

Acceptance Rates

Overall Acceptance Rate 183 of 487 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)117
  • Downloads (Last 6 weeks)14
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Implicit Bonded Discrete Element Method with Manifold OptimizationACM Transactions on Graphics10.1145/371185244:1(1-17)Online publication date: 28-Jan-2025
  • (2025)Dynamic Change of Three-Dimensional Soil in Game SimulatorsProceedings of IEMTRONICS 202410.1007/978-981-97-4784-9_19(257-274)Online publication date: 25-Jan-2025
  • (2024)Multi-level Partition of Unity on Differentiable Moving ParticlesACM Transactions on Graphics10.1145/368798943:6(1-21)Online publication date: 19-Dec-2024
  • (2024)GPU-native Dynamic Octree-based Grid Adaptation to Moving BodiesLobachevskii Journal of Mathematics10.1134/S199508022401042645:1(308-318)Online publication date: 6-May-2024
  • (2024)A Multi-Layer Solver for XPBDProceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation10.1111/cgf.15186(1-11)Online publication date: 21-Aug-2024
  • (2024)Rod-Bonded Discrete Element MethodGraphical Models10.1016/j.gmod.2024.101218133(101218)Online publication date: Jun-2024
  • (2024)Comparison of different methodologies for estimating local density in particle-based simulationsComputational Particle Mechanics10.1007/s40571-024-00870-4Online publication date: 4-Dec-2024
  • (2023)Identifiability of interaction kernels in mean-field equations of interacting particlesFoundations of Data Science10.3934/fods.2023007(0-0)Online publication date: 2023
  • (2023)A Survey on Open-Source Simulation Platforms for Multi-Copter UAV SwarmsRobotics10.3390/robotics1202005312:2(53)Online publication date: 1-Apr-2023
  • (2023)Real-time Height-field Simulation of Sand and Water MixturesSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618159(1-10)Online publication date: 10-Dec-2023
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media