skip to main content
10.1145/1073368.1073406acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
Article

Vortex fluid for gaseous phenomena

Published: 29 July 2005 Publication History

Abstract

In this paper, we present a method for visual simulation of gaseous phenomena based on the vortex method. This method uses a localized vortex flow as a basic building block and combines those blocks to describe a whole flow field. As a result, we achieve computational efficiency by concentrating only on a localized vorticity region while generating dynamic swirling fluid flows. Based on the Lagrangian framework, we resolve various boundary conditions. By exploiting the panel method, we satisfy the no-through boundary condition in a Lagrangian way. A simple and effective way of handling the no-slip boundary condition is also presented. In treating the no-slip boundary condition, we allow a user to control the roughness of the boundary surface, which further improves visual realism.

References

[1]
{AG91} Anderson C. R., Greengard C.: Vortex dynamics and vortex methods. In Lectures in Applied Mathematics (1991). vol. 28, American Mathematical Society, Providence.
[2]
{Cho73} Chorin A. J.: Numerical study of slightly viscous flow. Journal of Fluid Mechanics 57, 4 (1973), 785--796.
[3]
{CK98} Cottet G.-H., Koumoutsakos P. D.: Vortex Methods: Theory and Practice. Cambridge University Press, 1998.
[4]
{Cur93} Currie I.: Fundamental Mechanics of Fluids. McGraw Hill, 1993.
[5]
{DCG98} Desbrun M., Cani-Gascuel M.-P.: Active implicit surface for animation. In Proceedings of Graphics Interface (1998).
[6]
{DCG99} Desbrun M., Cani-Gascuel M.-P.: Space-time adaptive simulation of highly deformable substances. Tech. rep., INRIA, 1999.
[7]
{FM97} Foster N., Metaxas D.: Modeling the motion of a hot turbulent gas. In Proceedings of SIGGRAPH 1997 (1997), pp. 181--188.
[8]
{FSJ01} Fedkiw R., Stam J., Jensen H. W.: Visual simulation of smoke. In Proceedings of SIGGRAPH 2001 (2001). Fiume E., (Ed.). pp. 15--22.
[9]
{GLG95} Gamito M. N., Lopes P. F., Gomes M. R.: Two-dimensional simulation of gaseous phenomena using vortex particles. In the 6th Eurographics Workshop on Computer Animation and Simulation (1995), vol. 28, Springer-Verlag, pp. 3--15.
[10]
{GR87} Greengard L., Rokhlin V.: A fast algorithm for particle simulation. Journal of Computational Physics 73 (1987). 325--348.
[11]
{HS64} Hess J. L., Smith A. M.: Calculation of non-lifting potential flow about arbitrary three-dimensional bodies. Journal of Ship Research 8 (1964), 22--44.
[12]
{KvH84} Kajiya J. T., Von Herzen B. P.: Ray tracing volume density. In Proceedings of SIGGRAPH 1984 (1984). pp. 165--174.
[13]
{Leo80} Leonard A.: Review: Vortex methods for flow simulation. Journal of Computational Physics 37 (1980), 289--335.
[14]
{MCG03} Müller M., Charypar D., Gross M.: Particle-based fluid simulation for interactive applications. In Proceedings of Eurographics/SIGGRAPH Symposium on Computer Animation (2003), pp. 154--159.
[15]
{Pri94} Pringle G. J.: Numerical Study of Three-Dimensional Flow usiing Fast Parallel Particle Algorithm. PhD thesis, Department of Mathematics, Napier University, Edinburgh, 1994.
[16]
{PTB*03} Premože S., Tasdizen T., Bigler J., Lefohn A., Whitaker R. T.: Particle-based simulation of fluids. In Proceedings of EUROGRAPHICS 2003 (2003), vol. 22.
[17]
{PW00} Plounhans P., Winckelmans G. S.: Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry. Journal of Computational Physics 165(2000), 354--406.
[18]
{PWS*02} Plounhans P., Winckelmans G. S., Salmon J. K., Leonard A., Warren M. S.: Vortex methods for direct numerical simulation of three-dimensional bluff body flows: Application to the sphere at re=300, 500 and 1000. Journal of Computational Physics 178 (2002), 427--463.
[19]
{SF923} Shinya M., Fournier A.: Stochasitic motion - motion under the influence of wind. In Eurographics '92 (1992), pp. 199--128.
[20]
{SF92} Stam J., Fiume E.: Turbulent wind fields for gaseous phenomena. In Proceedings of SIGGRAPH 1993 (1993), pp. 369--376.
[21]
{SF95} Stam J., Fiume E.: Depicting fire and other gaseous phenomena using diffusion processes. In Proceedings of SIGGRAPH 1995 (1995), pp. 129--136.
[22]
{SRF05} Salle A., Rasmussen N., Fedkiw R.: A vortex particle method for smoke, water and explosions. ACM Transactions on Graphics (SIGGRAPH 2005) 24, 3 (2005).
[23]
{Sta97} Stam J.: A general animation framework for gaseous phenomena. Tech. Rep. R047, ERCIM Research Report, 1997.
[24]
{Sta99} Stam J.: Stable fluid. In Proceedings of SIGGRAPH 1999 (1999), pp. 121--128.
[25]
{Whi94} White F. M.: Fluid Mechanics. McGraw Hill, 1994.
[26]
{WL93} Winckelmans G. S., Leonard A.: Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows. Journal of Computational Physics 109 (1993), 243--273.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation
July 2005
366 pages
ISBN:1595931988
DOI:10.1145/1073368
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 July 2005

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

SCA05
Sponsor:
SCA05: Symposium on Computer Animation
July 29 - 31, 2005
California, Los Angeles

Acceptance Rates

Overall Acceptance Rate 183 of 487 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)14
  • Downloads (Last 6 weeks)5
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An Eulerian Vortex Method on Flow MapsACM Transactions on Graphics10.1145/368799643:6(1-14)Online publication date: 19-Dec-2024
  • (2024)A Vortex Particle-on-Mesh Method for Soap Film SimulationACM Transactions on Graphics10.1145/365816543:4(1-14)Online publication date: 19-Jul-2024
  • (2024)Velocity-Based Monte Carlo FluidsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657405(1-11)Online publication date: 13-Jul-2024
  • (2024)The Impulse Particle‐In‐Cell MethodComputer Graphics Forum10.1111/cgf.1502243:2Online publication date: 24-Apr-2024
  • (2024)A unified particle method for fluid simulation in ship fire scenarioOcean Engineering10.1016/j.oceaneng.2024.119266312(119266)Online publication date: Nov-2024
  • (2024)Wall-bounded flow simulation on vortex dynamicsComputers & Graphics10.1016/j.cag.2024.103990122(103990)Online publication date: Aug-2024
  • (2023)Fluid CohomologyACM Transactions on Graphics10.1145/359240242:4(1-25)Online publication date: 26-Jul-2023
  • (2023)A Second‐Order Explicit Pressure Projection Method for Eulerian Fluid SimulationComputer Graphics Forum10.1111/cgf.1462741:8(95-105)Online publication date: 20-Mar-2023
  • (2023)Impulse Fluid SimulationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.314946629:6(3081-3092)Online publication date: 1-Jun-2023
  • (2022)Research on smoke simulation with vortex sheddingPLOS ONE10.1371/journal.pone.026911417:6(e0269114)Online publication date: 16-Jun-2022
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media