skip to main content
10.1145/1073884.1073922acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

Symbolic-numeric completion of differential systems by homotopy continuation

Authors Info & Claims
Published:24 July 2005Publication History

ABSTRACT

Two ideas are combined to construct a hybrid symbolic-numeric differential-elimination method for identifying and including missing constraints arising in differential systems. First we exploit the fact that a system once differentiated becomes linear in its highest derivatives. Then we apply diagonal homotopies to incrementally process new constraints, one at a time. The method is illustrated on several examples, combining symbolic differential elimination (using rifsimp) with numerical homotopy continuation (using phc).

References

  1. J. Bonasia, F. Lemaire, G. Reid, R. Scott, and L. Zhi. Determination of Approximate Symmetries of Differential Equations. Centre de Recherches Mathématiques, CRM Proceedings and Lecture Notes. Vol 39, pages 233--250, 2004.Google ScholarGoogle Scholar
  2. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer--Verlag, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. F. Boulier, D. Lazard, F. Ollivier, and {M. Petitot. Representation for the radical of a finitely generated differential ideal. Proc. ISSAC 1995. ACM Press. 158--166, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. G. Chèze and A. Galligo. Four Lectures on Polynomial Absolute Factorization. In A. Dickenstein and I.Z. Emiri (Eds.), Solving Polynomial Equations: Foundations, Algorithms, and Applications. Volume 14 of Algorithms and Computation in Mathematics 14, Springer-Verlag, pages 339--392, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Y. Chen and X.-S. Gao. Involutive Bases of Algebraic Partial Differential Equation Systems. Science in China (A), 33(2), page 97--113, 2003.Google ScholarGoogle Scholar
  6. M. Giusti and J. Heintz. La détermination de la dimension et des points isolées d'une variétéalgébrique peuvent s'effectuer en temps polynomial. In D. Eisenbud and L. Robbiano, eds.,Computational Algebraic Geometry and Commutative Algebra, Cortona 1991, vol. XXXIV of Symposia Mathematica, pages 216--256. Camb. Univ. Press, 1993.Google ScholarGoogle Scholar
  7. K. Hazaveh, D.J. Jeffrey, G.J. Reid, S.M. Watt, and A.D. Wittkopf. An exploration of homotopy solving in Maple. Proc. of the Sixth Asian Symp. on Computer Math. (ASCM 2003). Lect. Notes Series on Computing by World Sci. Publ. 10 edited by Z. Li and W. Sit (Singapore/River Edge, USA) 145--162, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  8. P.E. Hydon. Discrete point symmetries of ordinary differential equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 1961--1972, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  9. E. Hubert. Detecting degenerate cases in non-linear differential equations of first order. Theoretical Computer Science 187(1-2): 7--25, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. G. Lecerf. Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers. J. Complexity 19(4):564--596, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Leykin and J. Verschelde. PHCmaple: A Maple Interface to the Numerical Homotopy Algorithms in PHCpack. In Quoc-Nam Tran, ed.,Proceedings of the Tenth International Conference on Applications of Computer Algebra (ACA'04), pages 139--147, 2004.Google ScholarGoogle Scholar
  12. E. Mansfield. Differential Gröbner Bases. Ph.D. thesis, Univ. of Sydney, 1991.Google ScholarGoogle Scholar
  13. J.F. Pommaret. Systems of Partial Differential Equations and Lie Pseudogroups. Gordon and Breach Science Publishers, Inc. 1978.Google ScholarGoogle Scholar
  14. G. Reid, C. Smith, and J. Verschelde. Geometric completion of differential systems using numeric-symbolic continuation. SIGSAM Bulletin 36(2):1--17, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. G. J. Reid, D. T. Weih and A. D. Wittkopf. A Point symmetry group of a differential equation which cannot be found using infinitesimal methods. In Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics. Edited by N.H. Ibragimov, M. Torrisi and A. Valenti. Kluwer, Dordrecht, 93--99, 1993.Google ScholarGoogle Scholar
  16. G. J. Reid, A. D. Wittkopf and A. Boulton. Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Eur. J. of Appl. Math. 7: 604--635.Google ScholarGoogle Scholar
  17. G. J. Reid, P. Lin, and A. D. Wittkopf. Differential elimination-completion algorithms for DAE and PDAE. Studies in Applied Math. 106(1): 1--45, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  18. C.J. Rust, Rankings of derivatives for elimination algorithms and formal solvability of analytic partial differential equations, Ph.D. Thesis, University of Chicago, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Sedoglavic. A probabilistic algorithm to test local algebraic observability in polynomial time. J. Symbolic Computation 33(5): 735--755, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. W.M. Seiler. Involution - The formal theory of differential equations and its applications in computer algebra and numerical analysis. Habilitation Thesis, Univ. of Mannheim, 2002.Google ScholarGoogle Scholar
  21. A. J. Sommese and J. Verschelde. Numerical homotopies to compute generic points on positive dimensional algebraic sets. Journal of Complexity 16(3):572-602, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. J. Sommese, J. Verschelde, and C. W. Wampler. Numerical irreducible decomposition using PHC pack. In M. Joswig and N.Takayama, editors, Algebra, Geometry, and Software Systems, pages 109--130. Springer--Verlag, 2003.Google ScholarGoogle Scholar
  23. A. J. Sommese, J. Verschelde, and C. W. Wampler. Homotopies for intersecting solution components of polynomial systems. SIAM J. Numer. Anal. 42(4):1552--1571, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. J. Sommese and C. W. Wampler. Numerical algebraic geometry. In The Mathematics of Numerical Analysis, Volume 32 of Lectures in Applied Mathematics, edited by J. Renegar, M. Shub, and S. Smale, 749--763, 1996. Proceedings of the AMS-SIAM Summer Seminar in Applied Mathematics, Park City, Utah, July 17-August 11, 1995, Park City, Utah.Google ScholarGoogle Scholar
  25. A. J. Sommese and C. W. Wampler. The Numerical solution of systems of polynomials arising in engineering and science. World Scientific Press, Singapore, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. Tuomela and T. Arponen. On the numerical solution of involutive ordinary differential systems. IMA J. Numer. Anal. 20: 561--599, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  27. J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Transactions on Mathematical Software 25(2): 251--276, 1999. Software available at http://www.math.uic.edu/~jan. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Wittkopf and G. J. Reid. Fast differential elimination in C: The CDiffElim environment. Computer Physics Communications, 139: 192--217, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  29. A. Wittkopf. Algorithms and Implementations for Differential Elimination. Ph.D. Thesis, Simon Fraser University, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. W.-T. Wu. On the foundations of algebraic differential geometry. Mathematics-Mechanization Research Preprint No. 3, pages 1--26, 1989.Google ScholarGoogle Scholar

Index Terms

  1. Symbolic-numeric completion of differential systems by homotopy continuation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader