skip to main content
article

Low-Level Image Cues in the Perception of Translucent Materials

Authors Info & Claims
Published:01 July 2005Publication History
Skip Abstract Section

Abstract

When light strikes a translucent material (such as wax, milk or fruit flesh), it enters the body of the object, scatters and reemerges from the surface. The diffusion of light through translucent materials gives them a characteristic visual softness and glow. What image properties underlie this distinctive appearance? What cues allow us to tell whether a surface is translucent or opaque? Previous work on the perception of semitransparent materials was based on a very restricted physical model of thin filters [Metelli 1970; 1974a,b]. However, recent advances in computer graphics [Jensen et al. 2001; Jensen and Buhler 2002] allow us to efficiently simulate the complex subsurface light transport effects that occur in real translucent objects. Here we use this model to study the perception of translucency, using a combination of psychophysics and image statistics. We find that many of the cues that were traditionally thought to be important for semitransparent filters (e.g., X-junctions) are not relevant for solid translucent objects. We discuss the role of highlights, color, object size, contrast, blur, and lighting direction in the perception of translucency. We argue that the physics of translucency are too complex for the visual system to estimate intrinsic physical parameters by inverse optics. Instead, we suggest that we identify translucent materials by parsing them into key regions and by gathering image statistics from these regions.

References

  1. Adelson, E. H. 1993. Perceptual organization and the judgement of brightness. Science 262, 5142, 2042--2044.Google ScholarGoogle Scholar
  2. Adelson, E. H. 1999. Lightness perception and lightness illusions. In The New Cognitive Neurosciences, M. S. Gazzaniga, Ed. MIT Press, Cambridge, MA, 339--351.Google ScholarGoogle Scholar
  3. Adelson, E. H. 2001. On seeing stuff: the perception of materials by humans and machines. In Proceedings of the SPIE. Volume 4299: Human Vision and Electronic Imaging VI, B. E. Rogowitz and T. N. Pappas, Eds. SPIE, Bellingham, WA, 1--12.Google ScholarGoogle Scholar
  4. Adelson, E. H. and Anandan, P. 1990. Ordinal characteristics of transparency. In Proceedings of the AAAI-90 Workshop on Qualitative Vision. 77--81.Google ScholarGoogle Scholar
  5. Anderson, B. 2001. Contrasting theories of White's illusion. Perception 30, 1499--1501.Google ScholarGoogle ScholarCross RefCross Ref
  6. Anderson, B. L. 1997. A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions. Perception 26, 4, 419--453.Google ScholarGoogle ScholarCross RefCross Ref
  7. Anderson, B. L. 1999. Stereoscopic surface perception. Neuron 24, 991--928.Google ScholarGoogle ScholarCross RefCross Ref
  8. Anderson, B. L. 2003. The role of occlusion in the perception of depth, lightness, and opacity. Psychological Review 110, 4, 785--801.Google ScholarGoogle ScholarCross RefCross Ref
  9. Beck, J. 1972. Surface Color Perception. Cornell University Press, Ithaca, New York.Google ScholarGoogle Scholar
  10. Beck, J. 1978. Additive and subtractive color mixture in color transparency. Perception and Psychophysics 23, 3, 265--267.Google ScholarGoogle ScholarCross RefCross Ref
  11. Beck, J. and Ivry, R. 1988. On the role of figural organization in perceptual transparency. Perception and Psychophysics 44, 6, 585--594.Google ScholarGoogle ScholarCross RefCross Ref
  12. Beck, J. and Prazdny, K. 1981. Highlights and the perception of glossiness. Perception and Psychophysics 30, 4, 407--410.Google ScholarGoogle ScholarCross RefCross Ref
  13. Beck, J., Prazdny, K., and Ivry, R. 1984. The perception of transparency with achromatic colors. Perception and Psychophysics 35, 5, 407--422.Google ScholarGoogle ScholarCross RefCross Ref
  14. Berzhanskaya, J., Swaminathan, G., Beck, J., and Mingolla, E. 2002. Highlights and surface gloss perception. Journal of Vision 2, 7, 93. (Vision Sciences Society conference abstract. VSS '02, Sarasota FL.)Google ScholarGoogle Scholar
  15. Blake, A. and Bülthoff, H. H. 1990. Does the brain know the physics of specular reflection? Nature 343, 6254, 165--168.Google ScholarGoogle Scholar
  16. Blake, A. and Bülthoff, H. H. 1991. Shape from specularities: Computation and psychophysics. Philosophical Transactions of the Royal Society (London) Series B 331, 237--252.Google ScholarGoogle ScholarCross RefCross Ref
  17. Bloj, M., Ripamonti, C., Mitha, K., Hauck, R., Greenwald, S., and Brainard, D. H. 2004. Does an equivalent illuminant model for the effect of surface slant on perceived lightness. Journal of Vision 4, 9, 735--746.Google ScholarGoogle ScholarCross RefCross Ref
  18. Brainard, D. H., Kraft, J. M., and Longère, P. 2003. Color constancy: developing empirical tests of computational models. In Colour Perception: From Light To Object, R. Mausfeld and D. Heyer, Eds. Oxford University Press, Oxford, UK, 307--334.Google ScholarGoogle Scholar
  19. Chandrasekhar, S. 1960. Radiative Transfer. Oxford University Press, Oxford, UK.Google ScholarGoogle Scholar
  20. Chen, J. V. and D'Zmura, M. 1998. Test of a convergence model for color transparency perception. Perception 27, 585--594.Google ScholarGoogle ScholarCross RefCross Ref
  21. Cornsweet, T. N. 1970. Visual Perception. Academic Press, New York.Google ScholarGoogle Scholar
  22. Debevec, P. E. 1998. Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. In Proceedings of ACM SIGGRAPH 98. ACM Press/ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, New York, 189--198. Google ScholarGoogle Scholar
  23. Delahunt, P. B. and Brainard, D. H. 2004. Color constancy under changes in reflected illumination. Journal of Vision 4, 9, 764--778.Google ScholarGoogle ScholarCross RefCross Ref
  24. Doerschner, K., Boyaci, H., and Maloney, L. T. 2004. Human observers compensate for secondary illumination originating in nearby chromatic surfaces. Journal of Vision 4, 2, 92--105.Google ScholarGoogle ScholarCross RefCross Ref
  25. D'Zmura, M., Colantoni, P., Knoblauch, K., and Laget, B. 1997. Color transparency. Perception 26, 471--492.Google ScholarGoogle ScholarCross RefCross Ref
  26. D'Zmura, M., Rinner, O., and Gegenfurtner, K. R. 2000. The colors seen behind transparent filters. Perception 29, 911--926.Google ScholarGoogle ScholarCross RefCross Ref
  27. Fleming, R. W., Dror, R. O., and Adelson, E. H. 2003. Real-world illumination and the perception of surface reflectance properties. Journal of Vision 3, 5, 347--368.Google ScholarGoogle ScholarCross RefCross Ref
  28. Fleming, R. W., Jensen, H. W., and Bülthoff, H. H. 2004. Perceiving translucent materials. In Proceedings of APGV 2004: ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization. ACM Press, New York, 127--134. Google ScholarGoogle Scholar
  29. Fuchs, W. 1923a. Experimentelle Untersuchungen &uberuml; die &anderunguml; von Farben unter dem Einfluss von Gestalten. Zeitshcrift für Psychologie 92, 299--325.Google ScholarGoogle Scholar
  30. Fuchs, W. 1923b. Untersuchungen &uberuml; das simultane Hintereinandersehen auf derselben Sehrichtung. Zeitshcrift für Psychologie 91, 195--235.Google ScholarGoogle Scholar
  31. Gerbino, W. 1994. Achromatic transparency. In Lightness, Brightness and Transparency, A. L. Gilchrist, Ed. Lawrence Erlbaum, Hove, England, 215--255.Google ScholarGoogle Scholar
  32. Gerbino, W., Stultiens, C. I., M., J., and de Weert, C. M. 1990. Transparent layer constancy. Journal of Experimental Psychology: Human Perception and Performance 16, 1, 3--20.Google ScholarGoogle ScholarCross RefCross Ref
  33. Gilchrist, A. L., Kossyfidis, C., Bonato, F., Agostini, T., Cataliotti, J., Li, X., Spehar, B., Annan, V., and Economou, E. 1999. An anchoring theory of lightness perception. Psychological Review 106, 795--834.Google ScholarGoogle ScholarCross RefCross Ref
  34. Hartline, H. K. 1940. The receptive fields of optic nerve fibres. American Journal of Physiology 130, 690--699.Google ScholarGoogle ScholarCross RefCross Ref
  35. Heeger, D. J. and Bergen, J. R. 1995. Pyramid-based texture analysis/synthesis. In Proceedings of ACM SIGGRAPH 95. ACM Press/ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, New York, 229--238. Google ScholarGoogle Scholar
  36. Heider, G. 1933. New studies in transparency, form and color. Psychologische Forschung 17, 13--55.Google ScholarGoogle ScholarCross RefCross Ref
  37. Hering, E. 1964. Outlines of a Theory of the Light Sense. Harvard University Press, Cambridge, MA. Original work published 1874. (Edition translated by L. M. Hurvich and D. Jameson.)Google ScholarGoogle Scholar
  38. Hunter, R. S. 1975. The Measurement of Appearance. Wiley-Interscience, New York.Google ScholarGoogle Scholar
  39. Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. A K Peters, Natick, MA. Google ScholarGoogle Scholar
  40. Jensen, H. W. and Buhler, J. 2002. A rapid hierarchical rendering technique for translucent materials. ACM Transactions of Graphics (SIGGRAPH 2002) 21, 3, 576--581. Google ScholarGoogle Scholar
  41. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of ACM SIGGRAPH 2001, E. Fiume, Ed. ACM Press/ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, New York, 511--518. Google ScholarGoogle Scholar
  42. Kanizsa, G. 1955. Condizioni ed effetti della transparenza fenomica. Revista di Psicologia 49, 3--19.Google ScholarGoogle Scholar
  43. Katz, D. 1935. The World of Colour. Kegan Paul, London, UK.Google ScholarGoogle Scholar
  44. Kersten, D. 1991. Transparency and the cooperative computation of scene attributes. In Computational Models of Visual Processing, M. S. Landy and J. A. Movshon, Eds. M.I.T. Press, Cambridge, MA, 209--228.Google ScholarGoogle Scholar
  45. Kersten, D., Bülthoff, H. H., Schwartz, B., and Kurtz, K. 1992. Interaction between transparency and structure from motion. Neural Computation 4, 4, 573--589. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Khang, B. G. and Zaidi, Q. 2002a. Accuracy of color scission for spectral transparencies. Journal of Vision 2, 6, 451--466.Google ScholarGoogle ScholarCross RefCross Ref
  47. Khang, B. G. and Zaidi, Q. 2002b. Cues and strategies for color constancy: perceptual scission, image junctions and transformational color matching. Vision Research 42, 2, 211--226.Google ScholarGoogle ScholarCross RefCross Ref
  48. Koenderink, J. J. 2003. Guest editorial. another Babel. Perception 32, 391--394.Google ScholarGoogle ScholarCross RefCross Ref
  49. Koenderink, J. J. and van Doorn, A. J. 1980. Photometric invariants related to solid shape. Optica Acta 27, 7, 981--996.Google ScholarGoogle ScholarCross RefCross Ref
  50. Koenderink, J. J. and van Doorn, A. J. 2001. Shading in the case of translucent objects. In Proceedings of the SPIE. Volume 4299: Human Vision and Electronic Imaging VI, B. E. Rogowitz and T. N. Pappas, Eds. SPIE, Bellingham, WA, 312--320.Google ScholarGoogle Scholar
  51. Koffka, K. 1935. Principles of Gestalt Psychology. Harcourt, New York.Google ScholarGoogle Scholar
  52. Lindsey, D. T. and Todd, J. T. 1996. On the relative contributions of motion energy and transparency to the perception of moving plaids. Vision Research 36, 207--222.Google ScholarGoogle ScholarCross RefCross Ref
  53. Maloney, L. T. and Yang, J. N. 2003. The illumination estimation hypothesis and surface color perception. In Colour Vision: Connecting the mind to the physical world, R. Mausfeld and D. Heyer, Eds. Oxford University Press, Oxford, UK, 335-- 358.Google ScholarGoogle Scholar
  54. Mamassian, P. and Kersten, D. 1996. Illumination, shading and the perception of local orientation. Vision Research 36, 15, 2351--2367.Google ScholarGoogle ScholarCross RefCross Ref
  55. Masin, S. C. 1997. The luminance conditions of transparency. Perception 26, 1, 39--50.Google ScholarGoogle ScholarCross RefCross Ref
  56. Masin, S. C. 1999a. Color scission and phenomenal transparency. Perceptual and Motor Skills 89, 815--823.Google ScholarGoogle ScholarCross RefCross Ref
  57. Masin, S. C. 1999b. Phenomenal transparency in achromatic checkerboards. Perceptual and Motor Skills 88, 2, 685--692.Google ScholarGoogle ScholarCross RefCross Ref
  58. Metelli, F. 1967. Zur Analyse der phänomenalen Durchscheintigkeitserschienungen. In Gestalt und Wirklichkeit, Festgabe für Ferdinand Weinhand. Duncker and Humboldt, Berlin, Germany.Google ScholarGoogle Scholar
  59. Metelli, F. 1970. An algebraic development of the theory of perceptual transparency. Ergonomics 13, 1, 59--66.Google ScholarGoogle ScholarCross RefCross Ref
  60. Metelli, F. 1974a. Achromatic color conditions in the perception of transparency. In Perception, R. B. Macleod and H. L. Pick, Eds. Cornell University Press, Ithaca, New York, 95--116.Google ScholarGoogle Scholar
  61. Metelli, F. 1974b. The perception of transparency. Scientific American 230, 4, 90--98.Google ScholarGoogle ScholarCross RefCross Ref
  62. Metelli, F., Da Pos, O., and Cavedon, A. 1985. Balanced and unbalanced, complete and partial transparency. Perception and Psychophysics 38, 4, 354--366.Google ScholarGoogle ScholarCross RefCross Ref
  63. Metzger, W. 1953. Gesetze des Sehens. W. Kramer, Frankfurt am Main, Germany.Google ScholarGoogle Scholar
  64. Mingolla, E. and Todd, J. T. 1986. Perception of solid shape from shading. Biological Cybernetics 53, 137--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Moulden, B., Kingdom, F., and Gatley, L. F. 1990. The standard deviation of luminance as a metric for contrast in random-dot images. Perception 19, 79--101.Google ScholarGoogle ScholarCross RefCross Ref
  66. Nakayama, K. and Shimojo, S. 1992. Experiencing and perceiving visual surfaces. Science 257, 1357--1363.Google ScholarGoogle ScholarCross RefCross Ref
  67. Nakayama, K., Shimojo, S., and Ramachandran, V. S. 1990. Transparency: Relation to depth, subjective contours, luminance, and neon color spreading. Perception 19, 497--513.Google ScholarGoogle ScholarCross RefCross Ref
  68. Nishida, S. and Shinya, M. 1998. Use of image-based information in judgments of surface-reflectance properties. Journal of the Optical Society of America A15, 2951--2965.Google ScholarGoogle ScholarCross RefCross Ref
  69. Peli, E. 1990. Contrast in complex images. Journal of the Optical Society of America A7, 2032--2040.Google ScholarGoogle ScholarCross RefCross Ref
  70. Plummer, D. J. and Ramachandran, V. S. 1993. Perception of transparency in stationary and moving images. Spatial Vision 7, 2, 113--123.Google ScholarGoogle ScholarCross RefCross Ref
  71. Portilla, J. and Simoncelli, E. P. 2000. A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision 40, 1, 49--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Robilotto, R., Khang, B. G., and Zaidi, Q. 2002. Sensory and physical determinants of perceived achromatic transparency. Journal of Vision 2, 5, 388--403.Google ScholarGoogle ScholarCross RefCross Ref
  73. Robilotto, R. and Zaidi, Q. 2004. Perceived transparency of neutral density filters across dissimilar backgrounds. Journal of Vision 4, 3, 183--195.Google ScholarGoogle ScholarCross RefCross Ref
  74. Singh, M. 2004. Lightness constancy through transparency: Internal consistency in layered surface representations. Vision Research 44, 1827--1842.Google ScholarGoogle ScholarCross RefCross Ref
  75. Singh, M. and Anderson, B. L. 2002a. Perceptual assignment of opacity to translucent surfaces: the role of image blur. Perception 31, 5, 531--552.Google ScholarGoogle ScholarCross RefCross Ref
  76. Singh, M. and Anderson, B. L. 2002b. Toward a perceptual theory of transparency. Psychological Review 109, 3, 492--519.Google ScholarGoogle ScholarCross RefCross Ref
  77. Somers, D. C. and Adelson, E. H. 1997. Junctions, transparency, and brightness. Investigative Ophthalmology and Vision Science (Supplement) 38, 453.Google ScholarGoogle Scholar
  78. Stoner, G. R., Albright, T. D., and Ramachandran, V. S. 1990. Transparency and coherence in human motion perception. Nature 344, 6262, 153--155.Google ScholarGoogle Scholar
  79. Todd, J. T. and Mingolla, E. 1983. Perception of surface curvature and direction of illuminant from patterns of shading. Journal of Experimental Psychology: Human Perception and Performance 9, 583--595.Google ScholarGoogle ScholarCross RefCross Ref
  80. Tommasi, M. 1999. A ratio model of perceptual transparency. Perceptual and Motor Skills 89, 3, 891--897.Google ScholarGoogle ScholarCross RefCross Ref
  81. Tudor-Hart, B. 1928. Studies in transparency, form and color. Psychologische Forschung 10, 255--298.Google ScholarGoogle ScholarCross RefCross Ref
  82. von Helmholtz, H. 1962. Helmholtz's Treatise on Physiological Optics. Dover, New York. Original work published 1867. (Edition edited by J. P. C. Southall.)Google ScholarGoogle Scholar
  83. Watanabe, T. and Cavanagh, P. 1992. The role of transparency in perceptual grouping and pattern recognition. Perception 21, 131--139.Google ScholarGoogle ScholarCross RefCross Ref
  84. Watanabe, T. and Cavanagh, P. 1993a. Surface decomposition accompanying the perception of transparency. Spatial Vision 7, 2, 95--111.Google ScholarGoogle ScholarCross RefCross Ref
  85. Watanabe, T. and Cavanagh, P. 1993b. Transparent surfaces defined by implicit X junctions. Vision Research 33, 16, 2339--2346.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Low-Level Image Cues in the Perception of Translucent Materials

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Applied Perception
            ACM Transactions on Applied Perception  Volume 2, Issue 3
            July 05
            202 pages
            ISSN:1544-3558
            EISSN:1544-3965
            DOI:10.1145/1077399
            Issue’s Table of Contents

            Copyright © 2005 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 July 2005
            Published in tap Volume 2, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader