skip to main content
10.1145/1082473.1082794acmconferencesArticle/Chapter ViewAbstractPublication PagesaamasConference Proceedingsconference-collections
Article

Improving reinforcement learning function approximators via neuroevolution

Published:25 July 2005Publication History

ABSTRACT

Reinforcement learning problems are commonly tackled with temporal difference methods, which estimate the long-term value of taking each action in each state. In most problems of real-world interest, learning this value function requires a function approximator. However, the feasibility of using function approximators depends on the ability of the human designer to select an appropriate representation for the value function. My thesis presents a new approach to function approximation that automates some of these difficult design choices by coupling temporal difference methods with policy search methods such as evolutionary computation. It also presents a particular implementation which combines NEAT, a neuroevolutionary policy search method, and Q-learning, a popular temporal difference method, to yield a new method called NEAT+Q that automatically learns effective representations for neural network function approximators. Empirical results in a server job scheduling task demonstrate that NEAT+Q can outperform both NEAT and Q-learning with manually designed neural networks.

References

  1. K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2):99--127, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Improving reinforcement learning function approximators via neuroevolution

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      AAMAS '05: Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems
      July 2005
      1407 pages
      ISBN:1595930930
      DOI:10.1145/1082473

      Copyright © 2005 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 25 July 2005

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      Overall Acceptance Rate1,155of5,036submissions,23%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader