skip to main content
article

SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers

Published: 01 September 2005 Publication History

Abstract

SUNDIALS is a suite of advanced computational codes for solving large-scale problems that can be modeled as a system of nonlinear algebraic equations, or as initial-value problems in ordinary differential or differential-algebraic equations. The basic versions of these codes are called KINSOL, CVODE, and IDA, respectively. The codes are written in ANSI standard C and are suitable for either serial or parallel machine environments. Common and notable features of these codes include inexact Newton-Krylov methods for solving large-scale nonlinear systems; linear multistep methods for time-dependent problems; a highly modular structure to allow incorporation of different preconditioning and/or linear solver methods; and clear interfaces allowing for users to provide their own data structures underneath the solvers. We describe the current capabilities of the codes, along with some of the algorithms and heuristics used to achieve efficiency and robustness. We also describe how the codes stem from previous and widely used Fortran 77 solvers, and how the codes have been augmented with forward and adjoint methods for carrying out first-order sensitivity analysis with respect to model parameters or initial conditions.

References

[1]
Brenan, K. E., Campbell, S. L., and Petzold, L. R. 1996. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM Press, Philadelphia, PA.
[2]
Brown, P. N. 1987. A local convergence theory for combined inexact-Newton/finite difference projection methods. SIAM J. Numer. Anal. 24, 2, 407--434.
[3]
Brown, P. N., Byrne, G. D., and Hindmarsh, A. C. 1989. VODE, a variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10, 1038--1051.
[4]
Brown, P. N. and Hindmarsh, A. C. 1989. Reduced storage matrix methods in stiff ODE systems. J. Appl. Math. Comp. 31, 49--91.
[5]
Brown, P. N., Hindmarsh, A. C., and Petzold, L. R. 1994. Using Krylov methods in the solution of large-scale differential-algebraic systems. SIAM J. Sci. Comput. 15, 1467--1488.
[6]
Brown, P. N., Hindmarsh, A. C., and Petzold, L. R. 1998. Consistent initial condition calculation for differential-algebraic systems. SIAM J. Sci. Comput. 19, 1495--1512.
[7]
Brown, P. N. and Saad, Y. 1990. Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 11, 450--481.
[8]
Brown, P. N. and Woodward, C. S. 2001. Preconditioning strategies for fully implicit radiation diffusion with material-energy transfer. SIAM J. Sci. Comput. 23, 2, 499--516.
[9]
Byrne, G. D. 1992. Pragmatic experiments with Krylov methods in the stiff ODE setting. In Computational Ordinary Differential Equations, J. Cash and I. Gladwell, Eds. Oxford University Press, Oxford, U.K., 323--356.
[10]
Byrne, G. D. and Hindmarsh, A. C. 1975. A polyalgorithm for the numerical solution of ordinary differential equations. ACM Trans. Math. Softw. 1, 71--96.
[11]
Byrne, G. D. and Hindmarsh, A. C. 1998. User documentation for PVODE, an ODE solver for parallel computers. Tech. rep. UCRL-ID-130884. Lawrence Livermore National Laboratory, Livermore, CA.
[12]
Byrne, G. D. and Hindmarsh, A. C. 1999. PVODE, an ODE solver for parallel computers. Intl. J. High Perf. Comput. Apps. 13, 4, 254--365.
[13]
Cao, Y., Li, S., Petzold, L. R., and Serban, R. 2003. Adjoint sensitivity analysis for differential-algebraic equations: The adjoint DAE system and its numerical solution. SIAM J. Sci. Comput. 24, 3, 1076--1089.
[14]
Cohen, S. D. and Hindmarsh, A. C. 1994. CVODE user guide. Tech. rep. UCRL-MA-118618. Lawrence Livermore National Laboratory, Livermore, CA.
[15]
Cohen, S. D. and Hindmarsh, A. C. 1996. CVODE, a stiff/nonstiff ODE solver in C. Comput. Phys. 10, 2, 138--143.
[16]
Collier, A. M., Hindmarsh, A. C., Serban, R., and Woodward, C. S. 2004. User documentation for KINSOL v2.2.1. LLNL Tech. rep. UCRL-SM-208116. Lawrence Livermore National Laboratory, Livermore, CA.
[17]
Curtis, A. R., Powell, M. J. D., and Reid, J. K. 1974. On the estimation of sparse Jacobian matrices. J. Inst. Math. Applic. 13, 117--119.
[18]
Dembo, R. S., Eisenstat, S. C., and Steihaug, T. 1982. Inexact Newton methods. SIAM J. Numer. Anal. 19, 400--408.
[19]
Dennis, J. E. and Schnabel, R. B. 1996. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Press, Philadelphia, PA.
[20]
Eisenstat, S. C. and Walker, H. F. 1996. Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17, 16--32.
[21]
Feehery, W. F., Tolsma, J. E., and Barton, P. I. 1997. Efficient sensitivity analysis of large-scale differential-algebraic systems. Appl. Num. Math. 25, 1, 41--54.
[22]
Hairer, E. and Wanner, G. 1991. Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, Germany.
[23]
Hiebert, K. L. and Shampine, L. F. 1980. Implicitly defined output points for solutions of ODEs. Tech. rep. SAND80-0180. Sandia National Laboratories, Albuquerque, NM.
[24]
Hindmarsh, A. C. 1992. Detecting stability barriers in BDF solvers. In Computational Ordinary Differential Equations, J. Cash and I. Gladwell, Eds. Oxford University Press, Oxford, U.K., 87--96.
[25]
Hindmarsh, A. C. 1995. Avoiding BDF stability barriers in the MOL solution of advection-dominated problems. Appl. Num. Math. 17, 311--318.
[26]
Hindmarsh, A. C. 2000. The PVODE and IDA algorithms. Tech. rep. UCRL-ID-141558. Lawrence Livermore National Laboratory, Livermore, CA.
[27]
Hindmarsh, A. C. and Serban, R. 2004a. User documentation for CVODE v2.2.1. LLNL Tech. rep. UCRL-SM-208108. Lawrence Livermore National Laboratory, Livermore, CA.
[28]
Hindmarsh, A. C. and Serban, R. 2004b. User documentation for CVODES v2.2.1. LLNL Tech. rep. UCRL-SM-208111. Lawrence Livermore National Laboratory, Livermore, CA.
[29]
Hindmarsh, A. C. and Serban, R. 2004c. User documentation for IDA v2.2.1. LLNL Tech. rep. UCRL-SM-208112. Lawrence Livermore National Laboratory, Livermore, CA.
[30]
Jackson, K. R. and Sacks-Davis, R. 1980. An alternative implementation of variable step-size multistep formulas for stiff ODEs. ACM Trans. Math. Softw. 6, 295--318.
[31]
Jones, J. E. and Woodward, C. S. 2001. Newton-Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. Adv. Water Resourc. 24, 763-- 774.
[32]
Kelley, C. T. 1995. Iterative Methods for Solving Linear and Nonlinear Equations. SIAM Press, Philadelphia, PA.
[33]
Lee, S. L., Hindmarsh, A. C., and Brown, P. N. 2000. User documentation for SensPVODE, a variant of PVODE for sensitivity analysis. Tech. Rep. UCRL-MA-140211. Lawrence Livermore National Laboratory, Livermore, CA.
[34]
Lee, S. L., Woodward, C. S., and Graziani, F. 2003. Analyzing radiation diffusion using time-dependent sensitivity-based techniques. J. Comp. Phys. 192, 1, 211--230.
[35]
Maly, T. and Petzold, L. R. 1996. Numerical methods and software for sensitivity analysis of differential-algebraic systems. Appl. Num. Math. 20, 57--79.
[36]
Radhakrishnan, K. and Hindmarsh, A. C. 1993. Description and use of LSODE, the Livermore solver for ordinary differential equations. Tech. rep. UCRL-ID-113855. Lawrence Livermore National Laboratory, Livermore, CA.
[37]
Rognlien, T. D., Xu, X. Q., and Hindmarsh, A. C. 2002. Application of parallel implicit methods to edge-plasma numerical simulations. J. Comp. Phys. 175, 249--268.
[38]
Saad, Y. and Schultz, M. H. 1986. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 7, 856--869.
[39]
Serban, R. and Hindmarsh, A. C. 2005. CVODES, the Sensitivity-enabled ODE solver in SUNDIALS. In Proceedings of the 2005 ASME International Design Engineering Technical Conference (Long Beach, CA, Sep. 24--28). Also published as 2005 LLNL Tech. rep. UCRL-PROC-21030, Lawrence Livermore National Laboratory, Livermore, CA.
[40]
Woodward, C. S. 1998. A Newton-Krylov-multigrid solver for variably saturated flow problems. In Proceedings of the Twelfth International Conference on Computational Methods in Water Resources, vol. 2. Computational Mechanics Publications, Southampton, U.K., 609--616.
[41]
Woodward, C. S., Grant, K. E., and Maxwell, R. 2002. Applications of sensitivity analysis to uncertainty quantification for variably saturated flow. In Computational Methods in Water Resources, S. M. Hassanizadeh, R. J. Schotting, W. G. Gray, and G. F. Pinder, Eds. Elsevier, Amsterdam, The Netherlands, 73--80.

Cited By

View all
  • (2025)Quantifying spectral information about source separation in multisource odour plumesPLOS ONE10.1371/journal.pone.029775420:1(e0297754)Online publication date: 10-Jan-2025
  • (2025)SUNDIALS time integrators for exascale applications with many independent systems of ordinary differential equationsInternational Journal of High Performance Computing Applications10.1177/1094342024128006039:1(123-146)Online publication date: 1-Jan-2025
  • (2025)Estimation of Filamentary Transport Parameters at the Edge of Tokamak MEPhIST-0Physics of Atomic Nuclei10.1134/S106377882407012387:7(902-910)Online publication date: 11-Jan-2025
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 31, Issue 3
Special issue on the Advanced CompuTational Software (ACTS) Collection
September 2005
143 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/1089014
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 September 2005
Published in TOMS Volume 31, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. DAEs
  2. ODEs
  3. nonlinear systems
  4. sensitivity analysis

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)264
  • Downloads (Last 6 weeks)22
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Quantifying spectral information about source separation in multisource odour plumesPLOS ONE10.1371/journal.pone.029775420:1(e0297754)Online publication date: 10-Jan-2025
  • (2025)SUNDIALS time integrators for exascale applications with many independent systems of ordinary differential equationsInternational Journal of High Performance Computing Applications10.1177/1094342024128006039:1(123-146)Online publication date: 1-Jan-2025
  • (2025)Estimation of Filamentary Transport Parameters at the Edge of Tokamak MEPhIST-0Physics of Atomic Nuclei10.1134/S106377882407012387:7(902-910)Online publication date: 11-Jan-2025
  • (2025) An integrated multiphase dynamic genome-scale model explains batch fermentations led by species of the Saccharomyces genus mSystems10.1128/msystems.01615-2410:2Online publication date: 18-Feb-2025
  • (2025)Sensitivity Analysis on the DYNASTY Facility 1D Modelica Models with the DAKOTA-FMU ApproachNuclear Technology10.1080/00295450.2024.2440693(1-23)Online publication date: 14-Feb-2025
  • (2025) Intrinsic microkinetic effects of spray-drying and SiC co-support on Mn–Na 2 WO 4 /SiO 2 catalysts used in oxidative coupling of methane Reaction Chemistry & Engineering10.1039/D4RE00403EOnline publication date: 2025
  • (2025)Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando ConditionsACS Applied Materials & Interfaces10.1021/acsami.4c1883817:6(9278-9288)Online publication date: 30-Jan-2025
  • (2025)Evaluation of the performance and complexity of water quality models for peatlandsJournal of Hydrology10.1016/j.jhydrol.2024.132421648(132421)Online publication date: Feb-2025
  • (2025)Investigation and simulation of droplet breakup and iron oxide nanoparticle formation in spray-flame synthesisJournal of Aerosol Science10.1016/j.jaerosci.2025.106535185(106535)Online publication date: Mar-2025
  • (2025)A simple model for latent thermal energy storage systems with encapsulated phase-change materialInternational Journal of Heat and Mass Transfer10.1016/j.ijheatmasstransfer.2024.126533239(126533)Online publication date: Apr-2025
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media