skip to main content
article

A dichotomy theorem for constraint satisfaction problems on a 3-element set

Published:01 January 2006Publication History
Skip Abstract Section

Abstract

The Constraint Satisfaction Problem (CSP) provides a common framework for many combinatorial problems. The general CSP is known to be NP-complete; however, certain restrictions on a possible form of constraints may affect the complexity and lead to tractable problem classes. There is, therefore, a fundamental research direction, aiming to separate those subclasses of the CSP that are tractable and those which remain NP-complete.Schaefer gave an exhaustive solution of this problem for the CSP on a 2-element domain. In this article, we generalise this result to a classification of the complexity of the CSP on a 3-element domain. The main result states that every subproblem of the CSP is either tractable or NP-complete, and the criterion separating them is that conjectured in Bulatov et al. [2005] and Bulatov and Jeavons [2001b]. We also characterize those subproblems for which standard constraint propagation techniques provide a decision procedure. Finally, we exhibit a polynomial time algorithm which, for a given set of allowed constraints, outputs if this set gives rise to a tractable problem class. To obtain the main result and the algorithm, we extensively use the algebraic technique for the CSP developed in Jeavons [1998b], Bulatov et al.[2005], and Bulatov and Jeavons [2001b].

References

  1. Allen, J. 1994. Natural Language Understanding. Benjamin Cummings.]]Google ScholarGoogle Scholar
  2. Bulatov, A. 2002. Mal'tsev constraints are tractable. Tech. Rep. PRG-RR-02-05, Computing Laboratory, University of Oxford, Oxford, UK.]]Google ScholarGoogle Scholar
  3. Bulatov, A. 2006a. Combinatorial problems raised from 2-semilattices. J. Alg., submitted for publication.]]Google ScholarGoogle Scholar
  4. Bulatov, A. 2006b. Three-element Mal'tsev algebras. Acta Sci. Math (Szeged). To appear.]]Google ScholarGoogle Scholar
  5. Bulatov, A., and Jeavons, P. 2000. Tractable constraints closed under a binary operation. Tech. Rep. PRG-TR-12-00, Computing Laboratory, University of Oxford, Oxford, UK.]]Google ScholarGoogle Scholar
  6. Bulatov, A., and Jeavons, P. 2001a. Algebraic approach to multisorted constraints. Tech. Rep. PRG-RR-01-18, Computing Laboratory, University of Oxford, Oxford, UK.]]Google ScholarGoogle Scholar
  7. Bulatov, A., and Jeavons, P. 2001b. Algebraic structures in combinatorial problems. Tech. Rep. MATH-AL-4-2001, Technische universität Dresden, Dresden, Germany.]]Google ScholarGoogle Scholar
  8. Bulatov, A., and Jeavons, P. 2003. An algebraic approach to multisorted constraits. In Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming (CP'03) (Kinsale, Ireland). 197--202.]]Google ScholarGoogle Scholar
  9. Bulatov, A., Jeavons, P., and Krokhin, A. 2001. The complexity of maximal constraint languages. In Proceedings of the 33rd Annual ACM Simposium on Theory of Computing (Hersonissos, Crete, Greece). ACM, New York, 667--674.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bulatov, A., Jeavons, P., and Krokhin, A. 2005. Classifying the complexity of constraints using finite algebras. SIAM J. Comput. 34, 720--742.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Burris, S., and Sankappanavar, H. 1981. A Course in Universal Algebra. Graduate Texts in Mathematics, vol. 78. Springer-Verlag, New York-Berlin.]]Google ScholarGoogle Scholar
  12. Cooper, M. 1989. An optimal k-consistency algorithm. Artif. Intel. 41, 89--95.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Creignou, N., Khanna, S., and Sudan, M. 2001. Complexity Classifications of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7. SIAM, Philadelphia, PA.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dalmau, V. 2000. Computational complexity of problems over generalized formulas. Ph.D. dissertation, Department LSI of the Universitat Politecnica de Catalunya (UPC), Barcelona, Spain.]]Google ScholarGoogle Scholar
  15. Dechter, R. 1992. From local to global consistency. Artif. Intel. 55, 1, 87--107.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Dechter, R. 2003. Constraint processing. Morgan-Kaufmann, San Francisco, CA.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Dechter, R., and Dechter, A. 1996. Structure-driven algorithms for truth maintenance. Artif. Intel. 82, 1--2, 1--20.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Dechter, R., and Meiri, I. 1994. Experimental evaluation of preprocessing algorithms for constraint satisfaction problems. Artif. Intel. 68, 211--241.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Dechter, R., and Pearl, J. 1988. Network-based heuristics for constraint satisfaction problems. Artif. Intel. 34, 1, 1--38.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Dechter, R., and van Beek, P. 1997. Local and global relational consistency. Theoret. Comput. Sci. 173, 1, 283--308.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Denecke, K., and Wismath, S. 2002. Universal Algebra and Applications in Theoretical Computer Science. Chapman and Hall/CRC Press.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Feder, T., and Vardi, M. 1998. The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28, 57--104.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Freuder, E. 1982. A sufficient condition for backtrack-free search. J. ACM 29, 1, 24--32.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Gottlob, G., Leone, L., and Scarcello, F. 2000. A comparison of structural CSP decomposition methods. Artif. Intel. 124, 2, 243--282.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jeavons, P. 1998a. Constructing constraints. In Proceedings 4th International Conference on Constraint Programming---CP'98 (Pisa, Oct.). Lecture Notes in Computer Science, vol. 1520. Springer-Verlag, New York, 2--16.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jeavons, P. 1998b. On the algebraic structure of combinatorial problems. Theoret. Comput. Sci. 200, 185--204.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Jeavons, P., Cohen, D., and Cooper, M. 1998a. Constraints, consistency and closure. Artif. Intel. 101, 1--2, 251--265.]]Google ScholarGoogle ScholarCross RefCross Ref
  28. Jeavons, P., Cohen, D., and Gyssens, M. 1997. Closure properties of constraints. J. ACM 44, 527--548.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jeavons, P., Cohen, D., and Pearson, J. 1998b. Constraints and universal algebra. Ann. Math. Artif. Intel. 24, 51--67.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Kolaitis, P. 2003. Constraint satisfaction, databases, and logic. In Proceedings of the 17th International Joint Conference on Artificial Intellignece (IJCAI'03).]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kolaitis, P., and Vardi, M. 2000a. Conjunctive-query containment and constraint satisfaction. J. Comput. Syst. Sci. 61, 302--332.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kolaitis, P., and Vardi, M. 2000b. A game-theoretic approach to constraint satisfaction. In Proceedings of the 17th National (US) Conference on Artificial Intelligence (AAAI'00). 175--181.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Kumar, V. 1992. Algorithms for constraint satisfaction problems: A survey. AI Magazine 13, 1, 32--44.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ladner, R. 1975. On the structure of polynomial time reducibility. J. ACM 22, 155--171.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. McKenzie, R., McNulty, G., and Taylor, W. 1987. Algebras, Lattices and Varieties. Vol. I. Wadsworth and Brooks, California.]]Google ScholarGoogle Scholar
  36. Montanari, U. 1974. Networks of constraints: Fundamental properties and applications to picture processing. Inf. Sci. 7, 95--132.]]Google ScholarGoogle ScholarCross RefCross Ref
  37. Nadel, B. 1995. Constraint satisfaction in Prolog: Complexity and theory-based heuristics. Inf. Sci. 83, 3--4, 113--131.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Nadel, B., and Lin, J. 1991. Automobile transmission design as a constraint satisfaction problem: Modeling the kinematik level. Artif. Intel. Eng. Des. Anal. Manuf. (AI EDAM) 5, 3, 137--171.]]Google ScholarGoogle ScholarCross RefCross Ref
  39. Pöschel, R., and Kalužnin, L. 1979. Funktionen- und Relationenalgebren. DVW, Berlin, Germany.]]Google ScholarGoogle Scholar
  40. Post, E. 1941. The Two-Valued Iterative Systems of Mathematical Logic. Annals Mathematical Studies, vol. 5. Princeton University Press.]]Google ScholarGoogle Scholar
  41. Schaefer, T. 1978. The complexity of satisfiability problems. In Proceedings of the 10th ACM Symposium on Theory of Computing (STOC'78). ACM, New York, 216--226.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Schwalb, E., and Vila, L. 1998. Temporal constraints: A survey. Constraints 3, 2--3, 129--149.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Szendrei, A. 1990. Simple surjective algebras having no proper subalgebras. J. Austral. Math. Soc. (Ser. A) 48, 434--454.]]Google ScholarGoogle ScholarCross RefCross Ref
  44. Tsang, E. 1993. Foundations of Constraint Satisfaction. Academic Press, London, England.]]Google ScholarGoogle Scholar
  45. van Hentenryck, P., Deville, Y., and Teng, C.-M. 1992. A generic arc-consistency algorithm and its specializations. Artif. Intel. 57, 291--321.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Vardi, M. 2000. Constraint satisfaction and database theory: A tutorial. In Proceedings of 19th ACM Symposium on Priciples of Database Systems (PODS'00). ACM, New York.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A dichotomy theorem for constraint satisfaction problems on a 3-element set

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Journal of the ACM
          Journal of the ACM  Volume 53, Issue 1
          January 2006
          206 pages
          ISSN:0004-5411
          EISSN:1557-735X
          DOI:10.1145/1120582
          Issue’s Table of Contents

          Copyright © 2006 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 January 2006
          Published in jacm Volume 53, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader