skip to main content
article

Rendering biological iridescences with RGB-based renderers

Published:01 January 2006Publication History
Skip Abstract Section

Abstract

Brilliant iridescent colors occur on many biological objects. Current RGB-based graphics renderers are not sufficient to simulate such phenomena. This is because biological iridescences are caused by interference or diffraction, which requires wavelength information to describe. In this article, we propose an iridescent shading process that allows to render biological iridescences with RGB-based renderers. The key ideas are to construct spectra from colors and to use a wavelength-dependent model to describe iridescences. A novel model for iridescent illumination due to multilayer interference is developed based on analytic calculation and numerical simulation, and is simplified for practical rendering. The iridescent shading process is implemented using RenderMan embedded in Maya. Iridescent Morpho butterflies and ground beetles are rendered as examples to test the proposed techniques.

References

  1. Anderson, T. F. and Richards, A. G. 1942. An electron microscope study of some structural colors in insects. J. Appl. Phys. 13, 748--758.]]Google ScholarGoogle Scholar
  2. Beckmann, P. and Spizzichino, A. 1963. The Scattering of Electromagnetic Waves from Rough Surfaces. Macmillan, New York, NY.]]Google ScholarGoogle Scholar
  3. Born, M. and Wolf, E. 1975. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Pergamon Press, Oxford, UK.]]Google ScholarGoogle Scholar
  4. Collins, S. 1997. Wavefront Tracking for Global Illumination Solution. Trinity College, Dublin, Ireland.]]Google ScholarGoogle Scholar
  5. Cook, R. L. and Torrance, K. E. 1982. A reflection model for computer graphics. ACM Trans. Graph. 1, 1, 7--24.]] Google ScholarGoogle Scholar
  6. Derakhshani, D. 2004. Introducing Maya 6: 3D for Beginners. CYBEX, Alameda, CA.]] Google ScholarGoogle Scholar
  7. Deville, P. M., Merzouk, S., Cazier, D., and Paul, J. C. 1994. Spectral data modeling for a lighting application. Comput. Graph. For. 13, 3, 97--106.]]Google ScholarGoogle Scholar
  8. Devlin, K., Chalmers, A., Wilkie, A., and Purgathofer, W. 2002. Tone reproduction and physically based spectral rendering. In Proceedings of Eurographics 2002, State of the Art Reports (Saarbücken, Germany, Sep. 2). 101--123.]]Google ScholarGoogle Scholar
  9. Dias, M. L. 1991. Ray tracing interference color. IEEE Comput. Graph. Appl. 11, 2, 54--60.]] Google ScholarGoogle Scholar
  10. Drew, M. and Funt, B. 1992. Natural metamers. CVGIP: Image Understand. 56, 2, 139--151.]] Google ScholarGoogle Scholar
  11. Evans, G. F. and McCool, M. D. 1999. Stratified wavelength clusters for efficient spectral Monte Carlo rendering. In Proceedings of Graphics Interface 1999 June 1999. 42--49.]] Google ScholarGoogle Scholar
  12. Finlayson, G. D., Drew, M. S., and Funt, B. V. 1994. Color constancy: Generalized diagonal transformation. J. Opt. Soc. Am. A, 11, 3011--3019.]]Google ScholarGoogle Scholar
  13. Foley, J. D., Dam, A. V., Feiner, S. K., and Hughes, J. F. 1996. Computer Graphics: Principles and Practice, 2nd ed. Addison-Wesley, Reading, MA.]] Google ScholarGoogle Scholar
  14. Forsyth, D. A. 1990. A novel algorithm for color constancy. Int. J. Comput. Vision 5, 5--36.]] Google ScholarGoogle Scholar
  15. Fox, D. L. 1976. Animal Biochromes and Structural Colours. University of California Press, Berkeley, CA.]]Google ScholarGoogle Scholar
  16. Fox, D. L. 1979. Biochromy: Natural Coloration of Living Things. University of California Press, Berkeley, CA.]]Google ScholarGoogle Scholar
  17. Gartaganis, J. 1992. A Wave-Based Illumination Model for Graphics. University of Alberta, Edmonton, Alta., Canada.]]Google ScholarGoogle Scholar
  18. Geist, R., Heim, O., and Junkins, S. 1996. Color representation in virtual environments. Color Res. Appl. 21, 2, 121--128.]]Google ScholarGoogle Scholar
  19. Ghiradella, H. T. 1991. Light and color on the wing: Structural colors in butterflies and moths. Appl. Opt. 30, 3492--3500.]]Google ScholarGoogle Scholar
  20. Glassner, A. S. 1989. How to derive a spectrum from an RGB triplet. IEEE Comput. Graph. Appl. 9, 4, 95--99.]] Google ScholarGoogle Scholar
  21. Glassner, A. S. 1994. A model of fluorescence and phosphorescence. In Proceedings of the 5th Eurographics Workshop on Rendering, 1994, S. Haas, S. Muller, G. Sakas, and P. Shirley, Eds., Springer-Verlag, Berlin, Germany, 57--68.]]Google ScholarGoogle Scholar
  22. Glassner, A. S. 1995. Principles of Digital Image Synthesis. Morgan Kaufmann, San Francisco, CA.]] Google ScholarGoogle Scholar
  23. Gondek, J. S., Meyer, G. W., and Newman, J. G. 1994. Wavelength dependent reflection functions. In Proceedings of ACM SIGGRAPH 1994. ACM Press, New York, NY, 213--219.]] Google ScholarGoogle Scholar
  24. Gralak, B., Tayeb, G., and Enoch, S. 2003. Structural colors in nature and butterfly-wing modeling. Opt. Photon. News Feb. 40--43.]]Google ScholarGoogle Scholar
  25. Guy, S. and Soler, C. 2004. Graphics gems revisted: Fast and physically-based rendering of gemstones. In Proceedings of ACM SIGGRAPH 2000 (Los Angeles, CA). 231--238.]] Google ScholarGoogle Scholar
  26. Hall, R. A. 1989. Illumination and Color in Computer Generated Imagery. Springer-Verlag, New York, NY.]] Google ScholarGoogle Scholar
  27. Hall, R. A. and Greenberg, D. P. 1983. A testbed for realistic image synthesis. IEEE Comput. Graph. Appl. 3, 6, 10--20.]]Google ScholarGoogle Scholar
  28. Hecht, E. 1998. Optics, 3rd ed. Addison-Wesley, Reading, MA.]]Google ScholarGoogle Scholar
  29. Hirayama, H., Kaneda, K., Yamaji, Y., Yamashita, H., and Monden, T. 2001. Visualization of optical phenomena caused by multilayer films based on wave optics. Vis. Comput. 17, 106--120.]]Google ScholarGoogle Scholar
  30. Horn, B. K. P. 1984. Exact reproduction of colored images. Comput. Vis., Graph. Image Process. 26, 135--167.]]Google ScholarGoogle Scholar
  31. Icart, I. and Arques, D. 2000. A physically-based BRDF model for multilayer systems with uncorrelated rough boundaries. In Eurograhics Rendering Techniques, B. Peroche and H. Rushmeier, Eds. Springer-Verlag, Berlin, Germany, 353--364.]] Google ScholarGoogle Scholar
  32. Iehl, J. C. and Péroche, B. 2000. An adaptive spectral rendering with a perceptual control. Comput. Graph. For. 19, 3, 291--300.]]Google ScholarGoogle Scholar
  33. Johnson, G. M. and Fairchild, M. D. 1999. Full-spectral color calculations in realistic image synthesis. IEEE Comput. Graph. Appl. 19, 4, 47--53.]] Google ScholarGoogle Scholar
  34. Judd, D. B. and Wyszecki, G. 1975. Color in Business, Science and Industry. John Wiley & Sons, New York, NY.]]Google ScholarGoogle Scholar
  35. Kinoshita, S., Yoshioka, S., and Kawagoe, K. 2002. Mechanisms of structural color in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale. Proc. R. Soc. Lond. B269, 1417--1421.]]Google ScholarGoogle Scholar
  36. Lee, D. W. 1991. Ultrastructural basis and function of iridescent blue color of fruits in Elaeocarpus. Nature 349, 260--262.]]Google ScholarGoogle Scholar
  37. Lee, D. W. 1997. Iridescent blue plants. Amer. Scient. 85, 56--63.]]Google ScholarGoogle Scholar
  38. Maloney, L. T. 1986. Evaluation of linear models of surface spectral reflectance with small numbers of parameters. J. Opt. Soc. Am. A. 3, 10, 1673--1683.]]Google ScholarGoogle Scholar
  39. Mason, C. W. 1927. Structural colors in insects II. J. Phys. Chem. 31, 321--354.]]Google ScholarGoogle Scholar
  40. Meyer, G. W. 1988. Wavelength selection for synthetic image generation. Comput. Vis. Graph. Image Process. 41, 57--79.]] Google ScholarGoogle Scholar
  41. Monroe, E. A. and Monroe, S. E. 1968. Origin of iridescent colors on the Indigo snakes. Science 159, 97--98.]]Google ScholarGoogle Scholar
  42. Musgrave, F. K. 1989. Prisms and rainbows: A dispersion model for computer graphics. In Proceedings of Graphics Interface 1989. 227--234.]]Google ScholarGoogle Scholar
  43. Nassau, K. 1983. The Physics and Chemistry of Color: The Fifteen Causes of Color. John Wiley & Sons, New York, NY.]]Google ScholarGoogle Scholar
  44. Parker, A. R. 2000. 515 Million years of structural colour. J. Opt. A: Pure Appl. Opt. 2, 6, R15-R28.]]Google ScholarGoogle Scholar
  45. Parker, A. R., McPhedran, R. C., McKenzie, D. R., Botten, L. C., and Nicorovici, N.-A. P. 2001. Aphrodite's iridescence. Nature 409, 36--37.]]Google ScholarGoogle Scholar
  46. Peercy, M. S. 1993. Linear color representations in full spectral rendering. In Proceedings of ACM Siggraph 1993. ACM Press, New York, NY, 191--198.]] Google ScholarGoogle Scholar
  47. Peercy, M. S., Baum, D. R., and Zhu, B. M. 1996. Linear color representations for efficient image synthesis. Color Res. Appl. 21, 2, 129--137.]]Google ScholarGoogle Scholar
  48. Phong, B.-T. 1975. Illumination for computer generated images. Commun. ACM 18, 6, 311--317.]] Google ScholarGoogle Scholar
  49. Prum, R. O., Torres, R. H., Williamson, S., and Dyck, J. 1998. Coherent light scattering by blue feather barbs. Nature 396, 28--29.]]Google ScholarGoogle Scholar
  50. Raso, M. and Fournier, A. 1991. A piecewise polynomial approach to shading using spectral distributions. In Proceedings of Graphics Interface 1991. 40--46.]]Google ScholarGoogle Scholar
  51. Rougeron, G. and Peroche, B. 1997. An adaptive representation of spectral data for reflectance computations. In Proceedings of the 8th Eurographics Workshop on Rendering, St. Etienne, France, 1997, J. Dorsey and P. Slusallek, Eds. Springer-Verlag, Berlin, Germany, 127--138.]] Google ScholarGoogle Scholar
  52. Schramm, M., Godek, J., and Meyer, G. 1997. Light scattering simulations using complex subsurface models. In Proceedings of Graphics Interface 1997, Toronto, Ont., Canada. Canadian Information Processing Society, Mississauga, Ont., Canada, 56--67.]] Google ScholarGoogle Scholar
  53. Simon, H. 1971. The Splendor of Iridescence of Structural Colors in the Animal World. Dodd, Mead & Company, New York, NY.]]Google ScholarGoogle Scholar
  54. Smits, B. 1999. An RGB to spectrum conversion for reflectances. J. Graph. Tools 4, 4, 11--22.]] Google ScholarGoogle Scholar
  55. Smits, B. E. and Meyer, G. W. 1990. Newton's colors: Simulating interference phenomena in realistic image synthesis. In Proceedings of the Eurographics Workshop on Photosimulation, Realism, and Physics in Computer Graphics, Berlin, June. Springer-Verlag, Berlin, Germany, 185--194.]]Google ScholarGoogle Scholar
  56. Stam, J. 1999. Diffraction shaders. In Proceedings of the ACM SIGGRAPH 1999. ACM Press, New York, NY, 101--110.]] Google ScholarGoogle Scholar
  57. Sun, Y., Fracchia, F. D., Calvert, T. W., and Drew, M. S. 1999. Deriving spectra from colors and rendering light interference. IEEE Comput. Graph. Appl. 19, 61--67.]] Google ScholarGoogle Scholar
  58. Sun, Y., Fracchia, F. D., and Drew, M. S. 1998. A composite model for representing spectral functions. Tech. Rep. SFU CMPT TR 1998-18. (Simon Fraser University Burnaby, B.C., Canada).]]Google ScholarGoogle Scholar
  59. Sun, Y., Fracchia, F. D., and Drew, M. S. 2000a. A physically-based dual representation of spectral functions. J. Opt. Eng. 39, 11, 2931--2942.]]Google ScholarGoogle Scholar
  60. Sun, Y., Fracchia, F. D., Drew, M. S., and Calvert, T. W. 2000b. Rendering iridescent colors of optical disks. In Proceedings of the 11th EUROGRAPHICS Workshop on Rendering (EGRW, Brno, Czech Republic, June). 341--352.]] Google ScholarGoogle Scholar
  61. Tabata, H., Kumazawa, K., Funakawa, M., Takimoto, J., and Akimoto, M. 1996. Microstructures and optical properties of scales of butterfly wings. Opt. Rev. 3, 129--145.]]Google ScholarGoogle Scholar
  62. Thomas, S. W. 1986. Dispersive refraction in ray tracing. Vis. Comput. 2, 1, 3--8.]]Google ScholarGoogle Scholar
  63. Upstill, S. 1990. The Renderman Companion: A Programmer's Guide to Realistic Computer Graphics. Addison-Wesley, Reading, MA.]] Google ScholarGoogle Scholar
  64. Verity, E. 1980. Color Observed. Van Nostrand Reinhold, New York, NY.]]Google ScholarGoogle Scholar
  65. Vukusic, P., Sambles, J. R., Lawrence, C. R., and Wootton, R. J. 1999. Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. London Ser. B266, 1403--1411.]]Google ScholarGoogle Scholar
  66. Vukusic, P., Sambles, J. R., Lawrence, C. R., and Wootton, R. J. 2001a. Now you see it---now you don't. Nature 410, 36.]]Google ScholarGoogle Scholar
  67. Vukusic, P. and Sambles, R. 2003. Photonic structure in biology. Nature 424, 852--855.]]Google ScholarGoogle Scholar
  68. Vukusic, P., Sambles, R., Lawrence, C., and Wakely, G. 2001b. Sculpted-multilayer optical effects in two species of Papilio butterfly. Appl. Opt. 40, 1116--1125.]]Google ScholarGoogle Scholar
  69. Wandell, B. A. 1987. The synthesis and analysis of color images. IEEE Trans. Patt. Anal. Mach. Intell. PAMI-9, 1, 2--13.]] Google ScholarGoogle Scholar
  70. Wilkie, A., Tobler, R. F., and Purgathofer, W. 2000. Raytracing of dispersion effects in transparent materials. In WSCG 2000 Conference Proceedings, Los Angeles, CA. 231--238.]]Google ScholarGoogle Scholar
  71. Wilkie, A., Tobler, R. F., and Purgathofer, W. 2001. Combined rendering of polarization and fluorescence effects. In Proceedings of the 12th Eurograhics Workshop on Rendering (London, U.K., June 25--27), S. J. Gortler and K. Myszkowski, Eds. 197--204.]] Google ScholarGoogle Scholar
  72. Williamson, S. J. and Cummins, H. Z. 1983. Light and color in Nature and Art. John Wiley and Sons, New York, NY.]]Google ScholarGoogle Scholar
  73. Woo, M., Neider, J., Davis, T., and Shreiner, D. 1999. Opengl Programming Guide: The Official Guide to Learning Opengl, Version 1.2, 3rd ed. Addison-Wesley, Reading, MA.]] Google ScholarGoogle Scholar
  74. Wyszecki, G. and Stiles, W. 1982. Color Science: Concepts and Methods, Quantitative Data and Formulas, 2nd ed. Wiley, New York, NY.]]Google ScholarGoogle Scholar
  75. Yuan, Y., Kunii, T. L., Inamoto, N., and Sun, L. 1988. Gemstone fire: Adaptive dispersive ray tracing of polyhedrons. Vis. Comput. 4, 5, 259--270.]]Google ScholarGoogle Scholar

Index Terms

  1. Rendering biological iridescences with RGB-based renderers

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader