skip to main content
article

Hierarchical RLE level set: A compact and versatile deformable surface representation

Authors Info & Claims
Published:01 January 2006Publication History
Skip Abstract Section

Abstract

This article introduces the Hierarchical Run-Length Encoded (H-RLE) Level Set data structure. This novel data structure combines the best features of the DT-Grid (of Nielsen and Museth [2004]) and the RLE Sparse Level Set (of Houston et al. [2004]) to provide both optimal efficiency and extreme versatility. In brief, the H-RLE level set employs an RLE in a dimensionally recursive fashion. The RLE scheme allows the compact storage of sequential nonnarrowband regions while the dimensionally recursive encoding along each axis efficiently compacts nonnarrowband planes and volumes. Consequently, this new structure can store and process level sets with effective voxel resolutions exceeding 5000 × 3000 × 3000 (45 billion voxels) on commodity PCs with only 1 GB of memory. This article, besides introducing the H-RLE level set data structure and its efficient core algorithms, also describes numerous applications that have benefited from our use of this structure: our unified implicit object representation, efficient and robust mesh to level set conversion, rapid ray tracing, level set metamorphosis, collision detection, and fully sparse fluid simulation (including RLE vector and matrix representations.) Our comparisons of the popular octree level set and Peng level set structures to the H-RLE level set indicate that the latter is superior in both narrowband sequential access speed and overall memory usage.

References

  1. Adalsteinsson, D. and Sethian, J. A. 1995. A fast level set method for propagating interfaces. J. Computat. Phys. 118, 2, 269--277. Google ScholarGoogle Scholar
  2. Batty, C. and Houston, B. 2005. The visual simulation of wispy smoke. In Proceedings of the SIGGRAPH 2005 on Sketches & Applications. ACM Press, New York, NY. Google ScholarGoogle Scholar
  3. Breen, D., Fedkiw, R., Museth, K., Osher, S., Sapiro, G., and Whitaker, R. 2004. Level Sets and PDE Methods for Computer Graphics. ACM SIGGRAPH '04 COURSE #27. ACM SIGGRAPH, Los Angeles, CA. ISBN 1-58113-950-X. Google ScholarGoogle Scholar
  4. Breen, D. E. and Whitaker, R. T. 2001. A level-set approach for the metamorphosis of solid models. IEEE Trans. Visual. Comput. Graph. 7, 2, 173--192. Google ScholarGoogle Scholar
  5. Bridson, R. 2003. Computational aspects of dynamic surfaces. dissertation. Stanford University, Stanford, CA. Google ScholarGoogle Scholar
  6. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In SCA '03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer animation. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 28--36. Google ScholarGoogle Scholar
  7. Carlson, M. 2004. Rigid, melting and flowing fluid. Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA. Google ScholarGoogle Scholar
  8. Curless, B. and Levoy, M. 1996. A volumetric method for building complex models from range images. In Computer Graphics 30. Annual Conference Series. 303--312. Google ScholarGoogle Scholar
  9. de Araujo, B. R. and Jorge, J. A. P. 2004. Curvature dependent polygonization of implicit surfaces. In Proceedings of the XVII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'04). IEEE, Computer Society Press, Los Alamitos, CA. 266--273. Google ScholarGoogle Scholar
  10. Enright, D., Losasso, F., and Fedkiw, R. 2004. A fast and accurate semi-Lagrangian particle level set method. Comput. Struct. 83, 479--490. Google ScholarGoogle Scholar
  11. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3, 736--744. Google ScholarGoogle Scholar
  12. Foster, N. and Fedkiw, R. 2001. Practical animation of liquids. In SIGGRAPH '01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY, 23--30. Google ScholarGoogle Scholar
  13. Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R. 2000. Adaptively sampled distance fields: A general representation of shape for computer graphics. In Proceedings of SIGGRAPH 2000. Computer Graphics Proceedings, Annual Conference Series. ACM Press, New York, NY/Addison Wesley Longman, Reading, MA, 249--254. Google ScholarGoogle Scholar
  14. Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463--468. Google ScholarGoogle Scholar
  15. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Nonconvex rigid bodies with stacking. ACM Trans. Graph. 22, 3, 871-- 878. Google ScholarGoogle Scholar
  16. Houston, B., Bond, C., and Wiebe, M. 2003. A unified approach for modeling complex occlusions in fluid simulations. In Proceedings of the SIGGRAPH 2003 on Sketches & Applications. ACM Press, New York, NY. Google ScholarGoogle Scholar
  17. Houston, B., Nielsen, M. B., Batty, C., Nilsson, O., and Museth, K. 2005. Gigantic deformable surfaces. In Proceedings of the SIGGRAPH 2005 on Sketches & Applications. ACM Press, New York, NY. Google ScholarGoogle Scholar
  18. Houston, B., Wiebe, M., and Batty, C. 2004. RLE sparse level sets. In Proceedings of the SIGGRAPH 2004 on Sketches & Applications. ACM Press, New York, NY. Google ScholarGoogle Scholar
  19. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York, NY, 131--140. Google ScholarGoogle Scholar
  20. Ju, T. 2004. Robust repair of polygonal models. ACM Trans. Graph. 23, 3, 888--895. Google ScholarGoogle Scholar
  21. LeVeque, R. 1996. High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33, 627--665. Google ScholarGoogle Scholar
  22. Liu, X., Osher, S., and Chan, T. 1994. Weighted essentially nonoscillatory schemes. J. Comput. Physat. 115, 200--212. Google ScholarGoogle Scholar
  23. Losasso, F., Fedkiw, R., and Osher, S. 2005. Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids. In Press.Google ScholarGoogle Scholar
  24. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23, 3, 457--462. Google ScholarGoogle Scholar
  25. Mauch, S. 2000. A fast algorithm for computing the closest point and distance transform. Go online to http://www.acm.caltech.edu/seanm/software/cpt/cpt.pdf.Google ScholarGoogle Scholar
  26. Museth, K., Breen, D. E., Whitaker, R. T., and Barr, A. H. 2002. Level set surface editing operators. ACM Trans. Graph. 21, 3, 330--338. Google ScholarGoogle Scholar
  27. Nielsen, M. B. and Museth, K. 2006. Dynamic Tubular Grid: An efficient data structure and algorithms for high resolution level sets. J. Sci. Comput. 26, 1, 1--39. Google ScholarGoogle Scholar
  28. Osher, S. and Sethian, J. A. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Computat. Phys. 79, 12--49. Google ScholarGoogle Scholar
  29. Osher, S. and Shu, C. 1991. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Num. Anal. 28, 907--922. Google ScholarGoogle Scholar
  30. Peng, D., Merriman, B., Osher, S., Zhao, H., and Kang, M. 1999. A PDE-based fast local level set method. J. Computat. Phys. 155, 2, 410--438. Google ScholarGoogle Scholar
  31. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM Press, New York, NY, 193--202. Google ScholarGoogle Scholar
  32. Sethian, J. A. 1996. A fast marching level set method for monotonically advancing fronts. In Proceedings of the National Academy of Sciences of the USA 93, 4 (Feb.), 1591--1595.Google ScholarGoogle Scholar
  33. Shah, M., Cohen, J. M., Patel, S., Lee, P., and Pighin, F. 2004. Extended Galilean invariance for adaptive fluid simulation. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM Press, New York, NY, 213--221. Google ScholarGoogle Scholar
  34. Shewchuk, J. R. 1994. An introduction to the conjugate gradient method without the agonizing pain. Go online to http://www.cs.cmu.edu/quake-papers/painless-conjugate-gradient.pdf.Google ScholarGoogle Scholar
  35. Shu, C. and Osher, S. 1988. Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Computat. Phys. 77, 439--471. Google ScholarGoogle Scholar
  36. Stam, J. 1999. Stable fluids. In Proceedings of SIGGRAPH 99. Computer Graphics Proceedings, Annual Conference Series. 121--128. Google ScholarGoogle Scholar
  37. Strain, J. 1999. Tree methods for moving interfaces. J. Computat. Phys. 151, 2, 616--648. Google ScholarGoogle Scholar
  38. Whitaker, R. T. 1998. A level-set approach to 3d reconstruction from range data. Int. J. Comput. Vision 29, 3, 203--231. Google ScholarGoogle Scholar
  39. Wiebe, M. and Houston, B. 2004. The Tar Monster: Creating a character with fluid simulation. In Proceedings of the SIGGRAPH 2004 on Sketches & Applications. ACM Press, New York, NY. Google ScholarGoogle Scholar
  40. Yngve, G. and Turk, G. 2002. Robust creation of implicit surfaces from polygonal meshes. IEEE Trans. Visual. Comput. Graph. 8, 4, 346--359. Google ScholarGoogle Scholar

Index Terms

  1. Hierarchical RLE level set: A compact and versatile deformable surface representation

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader