skip to main content
10.1145/1122591.1122599acmconferencesArticle/Chapter ViewAbstractPublication Pagesweb3dConference Proceedingsconference-collections
Article

A case for 3D streaming on peer-to-peer networks

Published:18 April 2006Publication History

ABSTRACT

One of the most serious issues holding back the widespread of 3D contents on Internet has been their inaccessibility due to large data volume. Many compression and progressive transmission techniques, as well as format standards, have been proposed in recent years to make 3D streaming increasingly viable for the efficient and accessible delivery of 3D contents. However, existing proposals have yet to seriously address one of the most important issues in practical adoption - a system's scalability in terms of the number of concurrent users. We argue that due to 3D contents' large data volume and interactive nature, client-server architecture, with its inherently fixed resource availability and high cost, will not be suitable to support popular Internet-scale 3D streaming. On the other hand, peer-to-peer (P2P) architectures hold the promise of both scalability and affordability. In this position paper, we describe the potential promises and challenges in adapting 3D streaming to P2P networks, using multi-user networked virtual environment (NVE) as an example. We also propose Flowing LoD (FLoD), a scalable, distributed and fault-tolerant P2P 3D streaming mechanism, that is based on Voronoi-based Overlay Network (VON), a P2P overlay specifically designed for NVE applications.

References

  1. 3DIF, 2006. 3d industrial forum. http://www.3dif.org/.Google ScholarGoogle Scholar
  2. ASCEND, 2006. Ascend project. http://ascend.sourceforge.net.Google ScholarGoogle Scholar
  3. AW, 2006. Activeworlds. http://www.activeworlds.com/.Google ScholarGoogle Scholar
  4. Barrus, J. W., Waters, R. C., and Anderson, D. B. 1996. Locales: Supporting large multiuser virtual environments. IEEE Comput. Graph. Appl. 16, 6, 50--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Baset, S. A., and Schulzrinne, H., 2004. An analysis of the skype peer-to-peer internet telephony protocol.Google ScholarGoogle Scholar
  6. Broll, W. 1998. Dwtp -- an internet protocol for shared virtual environments. In Proc. Symp. VRML, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Brutzman, D., Zyda, M., Watsen, K., and Macedonia, M. 1997. virtual reality transfer protocol (vrtp) design rationale. In Proc. WET-ICE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chen, B.-Y., and Nishita, T. 2002. Multiresolution streaming mesh with shape preserving and qos-like controlling. In Proc. ACM Web3D, 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chen, Z., Bodenheimer, B., and Barnes, J. F. 2003. Robust transmission of 3d geometry over lossy networks. In Proc. Intl. Conf. on 3D Web Technology, 161--ff. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chen, J., Wu, B., Delap, M., Knutsson, B., Lu, H., and Amza, C. 2005. Locality aware dynamic load management for massively multiplayer games. In Proc. ACM PPoPP, 289--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cheng, L., Bhushan, A., Pajarola, R., and Zarki, M. E. 2004. Real-time 3d graphics streaming using mpeg-4. In Proc. IEEE/ACM Wksp. on Broadband Wireless Services and Appl.Google ScholarGoogle Scholar
  12. Chim, J., Lau, R. W. H., Leong, H. V., and Si, A. 2003. Cyberwalk: A web-based distributed virtual walkthrough environment. IEEE Trans. on Multimedia 5, 4, 503--515. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chu, Y. H., Rao, S. G., Seshan, S., and Zhang, H. 2002. A case for end system multicast. IEEE JSAC 20, 8, 1456--1471. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Cohen, B. 2003. Incentives build robustness in bittorrent. In Proc. Wksp. on Economics of Peer-to-Peer Systems.Google ScholarGoogle Scholar
  15. Efros, A. A., and Leung, T. K. 1999. Texture synthesis by non-parametric sampling. In Proc. ICCV, 1033--1038. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fogel, E., Cohen-Or, D., Ironi, R., and Zvi, T. 2001. A web architecture for progressive delivery of 3d content. In Proc. ACM Web3D, 35--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. ForterraSystems, 2006. There.com. http://www.there.com.Google ScholarGoogle Scholar
  18. Gerndt, A., Hentschel, B., Wolter, M., Kuhlen, T., and Bischof, C. 2004. Viracocha: An efficient parallelization framework for large-scale cfd post-processing in virtual environments. In Proc. SC2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hesina, G., and Schmalstieg, D. 1998. A network architecture for remote rendering. In Proc. Intl. Wksp. DIS-RT, 88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hijiri, T., Nishitani, K., Cornish, T., Naka, T., and Asahara, S. 2000. A spatial hierarchical compression method for 3d streaming animation. In Proc. ACM VRML, 95--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hoppe, H. 1996. Progressive meshes. Computer Graphics 30, Annual Conference Series, 99--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hosseini, M., and Georganas, N. D. 2002. Mpeg-4 bifs streaming of large virtual environments and their animation on the web. In Proc. ACM Web3D, 19--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hu, S.-Y., and Liao, G.-M. 2004. Scalable peer-to-peer networked virtual environment. In Proc. ACM SIGCOMM 2004 wksp. on NetGames '04, 129--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hu, S.-Y., Chen, J.-F., and Chen, T.-H. 2006. Von: A scalable peer-to-peer network for virtual environments. IEEE Network (accepted), http://vast.sf.net/docs/pub/2006-hu-VON.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. ISO/IEC 14496-1. 1999. Information Technology -- Coding of audiovisual objects, Part 1: Systems, January.Google ScholarGoogle Scholar
  26. Iyer, S., Rowstron, A., and Druschel, P. 2002. Squirrel: A decentralized peer-to-peer web cache. In Proc. 21st ACM SIGACT-SIGOPS Symp. on Principles of Dist. Comp. (PODC). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Izal, M., Urvoy-Keller, G., Biersack, E., Felber, P., Hamra, A. A., and Garces-Erice, L. 2004. Dissecting bittorrent: Five months in a torrents lifetime. In Proc. Passive and Active Network Measurement (PAM 2004), 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  28. Keller, J., and Simon, G. 2003. Solipsis: A massively multi-participant virtual world. In Proc. PDPTA 03, 262--268.Google ScholarGoogle Scholar
  29. Kim, J., Lee, S., and Kobbelt, L. 2004. View-dependent streaming of progressive meshes. In Proc. SMI'04, 209--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Knutsson, B., Lu, H., Xu, W., and Hopkins, B. 2004. Peer-to-peer support for massively multiplayer games. In Proc. IEEE INFOCOM, 96--107.Google ScholarGoogle Scholar
  31. Liebeherr, J., Nahas, M., and Si, W. 2002. Application-layer multicasting with delaunay triangulation overlays. IEEE J. Sel. Areas Commun. (JSAC) 20, 8, 1472--1488. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. LindenLab, 2006. Second life. http://secondlife.com/.Google ScholarGoogle Scholar
  33. Macedonia, M., Zyda, M., Pratt, D., Brutzman, D., and Barham, P. 1995. Exploiting reality with multicast groups. IEEE Comput. Graph. Appl. 15, 5, 38--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Marvie, J.-E., and Bouatouch, K. 2003. Remote rendering of massively textured 3d scenes through progressive texture maps. In Proc. 3rd IASTED Conf. VIIP, vol. 2, 756--761.Google ScholarGoogle Scholar
  35. Olbrich, S., and Pralle, H. 1999. Virtual reality movies - real-time streaming of 3d objects. Computer Networks 31, 21, 2215--2225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. OpenHSF, 2006. Openhsf initiative. http://www.openhsf.org/.Google ScholarGoogle Scholar
  37. Pajarola, R., and Rossignac, J. 2000. Compressed progressive meshes. IEEE Trans. Vis. Comput. Graph. 6, 1, 79--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Pesce, M., Kennard, P., and Parisi, A. 1994. Cyberspace. In Proc. First Intl. Conf. on the World Wide Web.Google ScholarGoogle Scholar
  39. Pouwelse, J., Garbacki, P., Epema, D., and Sips, H. 2005. The bittorrent p2p file-sharing system: Measurements and analysis. In Proc. 4th Intl. Wksp. on Peer-to-Peer Systems (IPTPS'05). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Rusinkiewicz, S., and Levoy, M. 2001. Streaming qsplat: A viewer for networked visualization of large, dense models. In Proc. Symp. Interactive 3D Graphics, 63--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sahm, J., Soetebier, I., and Birthelmer, H. 2004. Efficient representation and streaming of 3d scenes. Computers & Graphics 28, 1, 15--24.Google ScholarGoogle ScholarCross RefCross Ref
  42. Schmalstieg, D., and Gervautz, M. 1996. Demand-driven geometry transmission for distributed virtual environments. Computer Graphics Forum 15, 3, 421--433.Google ScholarGoogle ScholarCross RefCross Ref
  43. Singhal, S., and Zyda, M. 1999. Networked Virtual Environments: Design and Implementation. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakrishnan, H. 2001. Chord: A scalable peer-to-peer lookup service for internet applications. In Proc. ACM SIGCOMM, 149--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Teler, E., and Lischinski, D. 2001. Streaming of complex 3d scenes for remote walkthroughs. EUROGRAPHICS 20, 3.Google ScholarGoogle Scholar
  46. Tran, D., Hua, K., and Do, T. 2003. Zigzag: An efficient peer-to-peer scheme for media streaming. In Proc. IEEE INFOCOM 2003, 1283--1292.Google ScholarGoogle Scholar
  47. VAST, 2006. Vast project. http://vast.sourceforge.net.Google ScholarGoogle Scholar
  48. WEB3D, 2006. Web3d consortium. http://www.web3d.org.Google ScholarGoogle Scholar
  49. Wikipedia, 2006. http://en.wikipedia.org/wiki/MMOG.Google ScholarGoogle Scholar
  50. Wu, G., and Chiueh, T.-C. 2006. How efficient is bittorrent? In Proc. 13th Annual Multimedia Comp. and Netw. (MMCN'06).Google ScholarGoogle Scholar
  51. Xu, D., Hefeeda, M., Hambrusch, S., and Bhargava, B. 2002. On peer-to-peer media streaming. In Proc. IEEE Conf. on Distributed Computing and Systems, 363--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Yang, S., and Kuo, C.-C. J. 2003. Robust graphics streaming in walkthrough virtual environments via wireless channels. In Proc. IEEE Globecom 2003.Google ScholarGoogle Scholar

Index Terms

  1. A case for 3D streaming on peer-to-peer networks

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          Web3D '06: Proceedings of the eleventh international conference on 3D web technology
          April 2006
          172 pages
          ISBN:1595933360
          DOI:10.1145/1122591

          Copyright © 2006 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 18 April 2006

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • Article

          Acceptance Rates

          Overall Acceptance Rate27of71submissions,38%

          Upcoming Conference

          WEB3D '24
          The 29th International ACM Conference on 3D Web Technology
          September 25 - 27, 2024
          Guimarães , Portugal

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader