skip to main content
10.1145/1134707.1134725acmconferencesArticle/Chapter ViewAbstractPublication PagesecConference Proceedingsconference-collections
Article

Finding equilibria in large sequential games of imperfect information

Published:11 June 2006Publication History

ABSTRACT

Finding an equilibrium of an extensive form game of imperfect information is a fundamental problem in computational game theory, but current techniques do not scale to large games. To address this, we introduce the ordered game isomorphism and the related ordered game isomorphic abstraction transformation. For a multi-player sequential game of imperfect information with observable actions and an ordered signal space, we prove that any Nash equilibrium in an abstracted smaller game, obtained by one or more applications of the transformation, can be easily converted into a Nash equilibrium in the original game. We present an algorithm, GameShrink, for abstracting the game using our isomorphism exhaustively. Its complexity is Õ(n2), where n is the number of nodes in a structure we call the signal tree. It is no larger than the game tree, and on nontrivial games it is drastically smaller, so GameShrink has time and space complexity sublinear in the size of the game tree. Using GameShrink, we find an equilibrium to a poker game with 3.1 billion nodes--over four orders of magnitude more than in the largest poker game solved previously. We discuss several electronic commerce applications for GameShrink. To address even larger games, we introduce approximation methods that do not preserve equilibrium, but nevertheless yield (ex post) provably close-to-optimal strategies.

References

  1. W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Math. Annalen, 99:118--133, 1928.]]Google ScholarGoogle ScholarCross RefCross Ref
  2. D. Applegate, G. Jacobson, and D. Sleator. Computer analysis of sprouts. Technical Report CMU-CS-91-144, 1991.]]Google ScholarGoogle Scholar
  3. R. Bellman and D. Blackwell. Some two-person games involving bluffing. PNAS, 35:600--605, 1949.]]Google ScholarGoogle ScholarCross RefCross Ref
  4. D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and D. Szafron. Approximating game-theoretic optimal strategies for full-scale poker. In IJCAI, 2003.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The challenge of poker. Artificial Intelligence, 134:201--240, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. B. Bollobàs. Combinatorics. Cambridge University Press, 1986.]]Google ScholarGoogle Scholar
  7. A. Casajus. Weak isomorphism of extensive games. Mathematical Social Sciences, 46:267--290, 2003.]]Google ScholarGoogle ScholarCross RefCross Ref
  8. X. Chen and X. Deng. Settling the complexity of 2-player Nash equilibrium. ECCC, Report No. 150, 2005.]]Google ScholarGoogle Scholar
  9. V. Chvátal. Linear Programming. W. H. Freeman & Co., 1983.]]Google ScholarGoogle Scholar
  10. B. P. de Bruin. Game transformations and game equivalence. Technical note x-1999-01, University of Amsterdam, Institute for Logic, Language, and Computation, 1999.]]Google ScholarGoogle Scholar
  11. S. Elmes and P. J. Reny. On the strategic equivalence of extensive form games. J. of Economic Theory, 62:1--23, 1994.]]Google ScholarGoogle ScholarCross RefCross Ref
  12. L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.]]Google ScholarGoogle Scholar
  13. A. Gilpin and T. Sandholm. Finding equilibria in large sequential games of imperfect information. Technical Report CMU-CS-05-158, Carnegie Mellon University, 2005.]]Google ScholarGoogle Scholar
  14. A. Gilpin and T. Sandholm. Optimal Rhode Island Hold'em poker. In AAAI, pages 1684--1685, Pittsburgh, PA, USA, 2005.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Gilpin and T. Sandholm. A competitive Texas Hold'em poker player via automated abstraction and real-time equilibrium computation. Mimeo, 2006.]]Google ScholarGoogle Scholar
  16. A. Gilpin and T. Sandholm. A Texas Hold'em poker player based on automated abstraction and real-time equilibrium computation. In AAMAS, Hakodate, Japan, 2006.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. L. Ginsberg. Partition search. In AAAI, pages 228--233, Portland, OR, 1996.]]Google ScholarGoogle Scholar
  18. M. L. Ginsberg. GIB: Steps toward an expert-level bridge-playing program. In IJCAI, Stockholm, Sweden, 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Govindan and R. Wilson. A global Newton method to compute Nash equilibria. J. of Econ. Theory, 110:65--86, 2003.]]Google ScholarGoogle ScholarCross RefCross Ref
  20. C. A. Knoblock. Automatically generating abstractions for planning. Artificial Intelligence, 68(2):243--302, 1994.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. E. Kohlberg and J.-F. Mertens. On the strategic stability of equilibria. Econometrica, 54:1003--1037, 1986.]]Google ScholarGoogle ScholarCross RefCross Ref
  22. D. Koller and N. Megiddo. The complexity of two-person zero-sum games in extensive form. Games and Economic Behavior, 4(4):528--552, Oct. 1992.]]Google ScholarGoogle ScholarCross RefCross Ref
  23. D. Koller and N. Megiddo. Finding mixed strategies with small supports in extensive form games. International Journal of Game Theory, 25:73--92, 1996.]]Google ScholarGoogle ScholarCross RefCross Ref
  24. D. Koller, N. Megiddo, and B. von Stengel. Efficient computation of equilibria for extensive two-person games. Games and Economic Behavior, 14(2):247--259, 1996.]]Google ScholarGoogle ScholarCross RefCross Ref
  25. D. Koller and A. Pfeffer. Representations and solutions for game-theoretic problems. Artificial Intelligence, 94(1):167--215, July 1997.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. M. Kreps and R. Wilson. Sequential equilibria. Econometrica, 50(4):863--894, 1982.]]Google ScholarGoogle ScholarCross RefCross Ref
  27. H. W. Kuhn. Extensive games. PNAS, 36:570--576, 1950.]]Google ScholarGoogle ScholarCross RefCross Ref
  28. H. W. Kuhn. A simplified two-person poker. In Contributions to the Theory of Games, volume 1 of Annals of Mathematics Studies, 24, pages 97--103. Princeton University Press, 1950.]]Google ScholarGoogle Scholar
  29. H. W. Kuhn. Extensive games and the problem of information. In Contributions to the Theory of Games, volume 2 of Annals of Mathematics Studies, 28, pages 193--216. Princeton University Press, 1953.]]Google ScholarGoogle Scholar
  30. C. Lemke and J. Howson. Equilibrium points of bimatrix games. Journal of the Society for Industrial and Applied Mathematics, 12:413--423, 1964.]]Google ScholarGoogle ScholarCross RefCross Ref
  31. R. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. In ACM-EC, pages 36--41, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. C.-L. Liu and M. Wellman. On state-space abstraction for anytime evaluation of Bayesian networks. SIGART Bulletin, 7(2):50--57, 1996.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Mas-Colell, M. Whinston, and J. R. Green. Microeconomic Theory. Oxford University Press, 1995.]]Google ScholarGoogle Scholar
  34. R. D. McKelvey and A. McLennan. Computation of equilibria in finite games. In Handbook of Computational Economics, volume 1, pages 87--142. Elsevier, 1996.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. P. B. Miltersen and T. B. Sørensen. Computing sequential equilibria for two-player games. In SODA, pages 107--116, 2006.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. Nash. Equilibrium points in n-person games. Proc. of the National Academy of Sciences, 36:48--49, 1950.]]Google ScholarGoogle ScholarCross RefCross Ref
  37. J. F. Nash and L. S. Shapley. A simple three-person poker game. In Contributions to the Theory of Games, volume 1, pages 105--116. Princeton University Press, 1950.]]Google ScholarGoogle Scholar
  38. A. Perea. Rationality in extensive form games. Kluwer Academic Publishers, 2001.]]Google ScholarGoogle ScholarCross RefCross Ref
  39. A. Pfeffer, D. Koller, and K. Takusagawa. State-space approximations for extensive form games, July 2000. Talk given at the First International Congress of the Game Theory Society, Bilbao, Spain.]]Google ScholarGoogle Scholar
  40. R. Porter, E. Nudelman, and Y. Shoham. Simple search methods for finding a Nash equilibrium. In AAAI, pages 664--669, San Jose, CA, USA, 2004.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. I. Romanovskii. Reduction of a game with complete memory to a matrix game. Soviet Mathematics, 3:678--681, 1962.]]Google ScholarGoogle Scholar
  42. T. Sandholm and A. Gilpin. Sequences of take-it-or-leave-it offers: Near-optimal auctions without full valuation revelation. In AAMAS, Hakodate, Japan, 2006.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. T. Sandholm, A. Gilpin, and V. Conitzer. Mixed-integer programming methods for finding Nash equilibria. In AAAI, pages 495--501, Pittsburgh, PA, USA, 2005.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. R. Savani and B. von Stengel. Exponentially many steps for finding a Nash equilibrium in a bimatrix game. In FOCS, pages 258--267, 2004.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. R. Selten. Spieltheoretische behandlung eines oligopolmodells mit nachfrageträgheit. Zeitschrift fòr die gesamte Staatswissenschaft, 12:301--324, 1965.]]Google ScholarGoogle Scholar
  46. R. Selten. Evolutionary stability in extensive two-person games -- correction and further development. Mathematical Social Sciences, 16:223--266, 1988.]]Google ScholarGoogle ScholarCross RefCross Ref
  47. J. Shi and M. Littman. Abstraction methods for game theoretic poker. In Computers and Games, pages 333--345. Springer-Verlag, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. S. J. J. Smith, D. S. Nau, and T. Throop. Computer bridge: A big win for AI planning. AI Magazine, 19(2):93--105, 1998.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM, 22(2):215--225, 1975.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. F. Thompson. Equivalence of games in extensive form. RAND Memo RM-759, The RAND Corporation, Jan. 1952.]]Google ScholarGoogle Scholar
  51. J. von Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton University Press, 1947.]]Google ScholarGoogle Scholar
  52. B. von Stengel. Efficient computation of behavior strategies. Games and Economic Behavior, 14(2):220--246, 1996.]]Google ScholarGoogle ScholarCross RefCross Ref
  53. B. von Stengel. Computing equilibria for two-person games. In Handbook of Game Theory, volume 3. North Holland, Amsterdam, 2002.]]Google ScholarGoogle Scholar
  54. R. Wilson. Computing equilibria of two-person games from the extensive form. Management Science, 18(7):448--460, 1972.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, 1997.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Finding equilibria in large sequential games of imperfect information

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          EC '06: Proceedings of the 7th ACM conference on Electronic commerce
          June 2006
          342 pages
          ISBN:1595932364
          DOI:10.1145/1134707

          Copyright © 2006 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 11 June 2006

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • Article

          Acceptance Rates

          Overall Acceptance Rate664of2,389submissions,28%

          Upcoming Conference

          EC '24
          The 25th ACM Conference on Economics and Computation
          July 8 - 11, 2024
          New Haven , CT , USA

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader