skip to main content
10.1145/1185657.1185663acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Discrete quadratic curvature energies

Published: 30 July 2006 Publication History

Abstract

Efficient computation of curvature-based energies is important for practical implementations of geometric modeling and physical simulation applications. Building on a simple geometric observation, we provide a version of a curvature-based energy expressed in terms of the Laplace operator acting on the embedding of the surface. The corresponding energy--being quadratic in positions--gives rise to a constant Hessian in the context of isometric deformations. The resulting isometric bending model is shown to significantly speed up common cloth solvers, and when applied to geometric modeling situations built onWillmore flow to provide runtimes which are close to interactive rates.

Supplementary Material

JPG File (a20-bergou-high.jpg)
JPG File (a20-bergou-low.jpg)
High Resolution (a20-bergou-high.mov)
Low Resolution (a20-bergou-low.mov)

References

[1]
Ascher, U. M., and Boxerman, E. 2003. On the modified conjugate gradient method in cloth simulation. Visual Computer 19, 7-8, 526--531.
[2]
Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M., Mcinnes, L. C., Smith, B. F., and Zhang, H. 2001. PETSc homepage. http://www.mcs.anl.gov/petsc.
[3]
Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of SIGGRAPH, 43--54.
[4]
Baraff, D., Witkin, A., and Kass, M. 2003. Untangling cloth. ACM Transactions on Graphics 22, 3, 862--870.
[5]
Blascke, W. 1929. Vorlesungen über Differentialgeometrie III. Springer.
[6]
Bobenko, A. I., and Schröder, P. 2005. Discrete Willmore flow. SGP, 101--110.
[7]
Bobenko, A. I. 2005. A conformal energy for simplicial surfaces. Combinatorial and Computational Geometry, 133--143.
[8]
Boxerman, E., and Ascher, U. 2004. Decomposing cloth. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New York, NY, USA, 153--161.
[9]
Breen, D. E., House, D. H., and Wozny, M. J. 1994. Predicting the drape of woven cloth using interacting particles. In Proceedings of SIGGRAPH 94, Computer Graphics Proceedings, Annual Conference Series, 365--372.
[10]
Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM TOG 21, 3, 594--603.
[11]
Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. SCA '03, 28--36.
[12]
CANHAM, P. 1970. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. Journal of Theoretical Biology 26, 61--81.
[13]
Carignan, M., Yang, Y., Thalmann, N. M., and Thalmann, D. 1992. Dressing animated synthetic actors with complex deformable clothes. In Proceedings of SIGGRAPH, 99--104.
[14]
Choi, K.-j., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Transactions on Graphics 21, 3 (July), 604--611.
[15]
Choi, K.-j., and Ko, H.-S. 2005. Research problems in clothing simulation. CAD 37, 6, 585--592.
[16]
Ciarlet, P. 2000. Mathematical Elasticity, Vol III. North-Holland.
[17]
Cirak, F., Ortiz, M., and Schröder, P. 2000. Subdivision surfaces: A new paradigm for thin-shell finite-element analysis. Internat. J. Numer. Methods Engrg. 47, 12, 2039--2072.
[18]
Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., and Rusu, R. 2004. A finite element method for surface restoration with smooth boundary conditions. CAGD, 427--445.
[19]
Cohen-steiner, D., and Morvan, J.-M. 2003. Restricted Delaunay triangulations and normal cycle. SoCG 2003, 312--321.
[20]
Crouzeix, M., and Raviart, P. A. 1973. Conforming and nonconforming finite elements for solving stationary Stokes equations. RAIRO Anal. Numer. 7, 33--76.
[21]
Deckelnick, K., Dziuk, G., and Elliott, C. M. 2005. Fully discrete semi-implicit second order splitting for anisotropic surface diffusion of graphs. SINUM 43, 1112--1138.
[22]
Desbrun, M., Schroder, P., and Barr, A. 1999. Interactive animation of structured deformable objects. Proceedings. Graphics Interface '99, 1--8.
[23]
Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. SIGGRAPH'99 Conference Proceedings, 317--324.
[24]
Etzmuss, O., Eberhardt, B., and Hauth, M. 2000. Implicitexplicit schemes for fast animation with particle systems. In Computer Animation and Simulation 2000, 138--151.
[25]
Etzmuss, O., Keckeisen, M., and Strasser, W. 2003. A fast finite element solution for cloth modelling. Proceedings 11th Pacific Conference on Computer Graphics and Applications, 244--251.
[26]
Feynman, C. 1986. Modeling the Appearance of Cloth. MSc thesis, MIT.
[27]
Govindaraju, N. K., Knott, D., Jain, N., Kabul, I., Tamstorf, R., Gayle, R., Lin, M. C., and Manocha, D. 2005. Interactive collision detection between deformable models using chromatic decomposition. ACM Transactions on Graphics 24, 3 (Aug.), 991--999.
[28]
Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. SCA '03, 62--67.
[29]
Haumann, R. 1987. Modeling the physical behavior of flexible objects. In Topics in Physically-based Modeling, Eds. Barr, Barrel, Haumann, Kass, Platt, Terzopoulos, andWitkin, SIGGRAPH Course Notes.
[30]
Hauth, M., and Etzmuss, O. 2001. A high performance solver for the animation of deformable objects using advanced numerical methods. Computer Graphics Forum 20, 3, 319--328.
[31]
Hauth, M., Etzmuss, O., and Strasser, W. 2003. Analysis of numerical methods for the simulation of deformable models. Visual Computer 19, 7-8, 581--600.
[32]
Hauth, M. 2004. Visual Simulation of Deformable Models. PhD thesis, University of Tübingen.
[33]
Helfrich, W. 1973. Elastic properties of lipid bilayers: Theory and possible experiments. Zeitschrift fr Naturforschung Teil C 28, 693--703.
[34]
Hildebrandt, K., and Polthier, K. 2004. Anisotropic filtering of non-linear surface features. CGF 23, 3, 391--400.
[35]
Hildebrandt, K., Polthier, K., and Wardetzky, M. 2005. On the convergence of metric and geometric properties of polyhedral surfaces. ZIB-Report ZR-05-24.
[36]
House, D. H., and Breen, D. E., Eds. 2000. Cloth modeling and animation.
[37]
Hsu, L., Kusner, R., and Sullivan, J. 1992. Minimizing the squared mean curvature integral for surfaces in space forms. Experiment. Math. 1, 3, 191--207.
[38]
Hughes, T. J. R. 1987. Finite Element Method - Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs.
[39]
Keckeisen, M., Kimmerle, S., Thomaszewski, B., and Wacker, M. 2004. Modelling Effects of Wind Fields in Cloth Animations. In Journal of WSCG, vol. Vol. 12, 205--212.
[40]
Klosowski, J. T., Held, M., Mitchell, J. S. B., Sowizral, H., and Zikan, K. 1998. Efficient collision detection using bounding volume hierarchies of k-dops. IEEE TVCG 4, 1 (January-March), 21--36.
[41]
Magnenat-Thalmann, N., and Volino, P. 2005. From early draping to haute couture models: 20 years of research. The Visual Computer 21, 8-10, 506--519.
[42]
Mercat, C. 2001. Discrete Riemann surfaces and the Ising model. Communications in Mathematical Physics 218, 1, 177--216.
[43]
Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2003. Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III, H.-C. Hege and K. Polthier, Eds. Springer-Verlag, Heidelberg, 113--134.
[44]
Ng, H. N., and Grimsdale, R. L. 1996. Computer graphics techniques for modeling cloth. IEEE CG&A 16, 5 (Sept.), 28--41.
[45]
Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experim. Math. 2, 15--36.
[46]
Polthier, K., 2002. Polyhedral surfaces of constant mean curvature. Habilitationsschrift, TU Berlin.
[47]
Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In Graphics Interface '95, 147--154.
[48]
Schenk, O., and Gärtner, K. 2004. Solving unsymmetric sparse systems of linear equations with PARDISO. Journal of Future Generation Computer Systems 20, 3, 475--487.
[49]
Schneider, R., and Kobbelt, L. 2001. Geometric fairing of irregular meshes for free-from surface design. CAGD 18, 359--379.
[50]
Sorkine, O. 2005. Laplacian mesh processing. Eurographics STAR - State of The Art Report, 53--70.
[51]
Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust quasistatic finite elements and flesh simulation. In 2005 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 181--190.
[52]
Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proceedings of SIGGRAPH, 205--214.
[53]
Thomaszewski, B., and Wacker, M. 2006. Bending Models for Thin Flexible Objects. In WSCG Short Communication proceedings.
[54]
Volino, P., Courchesne, M., and Thalmann, N. M. 1995. Versatile and efficient techniques for simulating cloth and other deformable objects. In SIGGRAPH '95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, ACM Press, New York, NY, USA, 137--144.
[55]
White, J. H. 2000. A global invariant of conformal mappings in space. Proceedings of the American Mathematical Society 38, 162--164.
[56]
Willmore, T. J. 2000. Surfaces in conformal geometry. Annals of Global Analysis and Geometry 18, 255--264.
[57]
Yoshizawa, S., and Belyaev, A. 2002. Fair triangle mesh generation via discrete elastica. In GMP2002, IEEE, 119--123.
[58]
Zhu, H., Jin, X., Feng, J., and Peng, Q. 2004. Survey on cloth animation. Journal of Computer Aided Design& Computer Graphics 16, 5, 613--618.
[59]
Zienkiewicz, O. C., and Taylor, R. L. 2000. The finite element method: The basis, 5th ed., vol. 1. Butterworth and Heinemann.

Cited By

View all
  • (2022)A Unified Surface Geometric Framework for Feature-Aware Denoising, Hole Filling and Context-Aware CompletionJournal of Mathematical Imaging and Vision10.1007/s10851-022-01107-w65:1(82-98)Online publication date: 22-Jun-2022
  • (2014)Form Finding of Twisted Interlaced Structures: A Hybrid ApproachAdvances in Architectural Geometry 201410.1007/978-3-319-11418-7_9(127-143)Online publication date: 3-Dec-2014

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH '06: ACM SIGGRAPH 2006 Courses
July 2006
83 pages
ISBN:1595933646
DOI:10.1145/1185657
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 July 2006

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

SIGGRAPH06
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)11
  • Downloads (Last 6 weeks)1
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2022)A Unified Surface Geometric Framework for Feature-Aware Denoising, Hole Filling and Context-Aware CompletionJournal of Mathematical Imaging and Vision10.1007/s10851-022-01107-w65:1(82-98)Online publication date: 22-Jun-2022
  • (2014)Form Finding of Twisted Interlaced Structures: A Hybrid ApproachAdvances in Architectural Geometry 201410.1007/978-3-319-11418-7_9(127-143)Online publication date: 3-Dec-2014

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media