skip to main content
10.1145/1185657.1185725acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Real-time rendering of plant leaves

Published:30 July 2006Publication History

ABSTRACT

This paper presents a framework for the real-time rendering of plant leaves with global illumination effects. Realistic rendering of leaves requires a sophisticated appearance model and accurate lighting computation. For leaf appearance we introduce a parametric model that describes leaves in terms of spatially-variant BRDFs and BTDFs. These BRDFs and BTDFs, incorporating analysis of subsurface scattering inside leaf tissues and rough surface scattering on leaf surfaces, can be measured from real leaves. More importantly, this description is compact and can be loaded into graphics hardware for fast run-time shading calculations, which are essential for achieving high frame rates. For lighting computation, we present an algorithm that extends the Precomputed Radiance Transfer (PRT) approach to all-frequency lighting for leaves. In particular, we handle the combined illumination effects due to lowfrequency environment light and high-frequency sunlight. This is done by decomposing the local incident radiance of sunlight into direct and indirect components. The direct component, which contains most of the high frequencies, is not pre-computed with spherical harmonics as in PRT; instead it is evaluated on-the-fly using pre-computed light-visibility convolution data. We demonstrate our framework by the rendering of a variety of leaves and assemblies thereof.

References

  1. Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacetbased BRDF generator. In Proceedings of SIGGRAPH '00, 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Assarsson, A., and Akenine-Moller, T. 2003. A geometry-based soft shadow volume algorithm using graphics hardware. ACM Transaction on Graphics 22(3), 511--520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baranoski, G. V. G., and Rokne, J. G. 1997. An algorithmic reflectance and transmittance model for plant tissue. Computer Graphics Forum 16(3), 141--150.Google ScholarGoogle ScholarCross RefCross Ref
  4. Baranoski, G., and Rokne, J. 2001. Efficiently simulating scattering of light by leaves. The Visual Computer 17(8), 491--505.Google ScholarGoogle ScholarCross RefCross Ref
  5. Baranoski, G. V. G., and Rokne, J. G. 2002. Light Interaction with Plants. SIGGRAPH '02 Course Notes.Google ScholarGoogle Scholar
  6. Beckmann, P., and Spizzichino, A. 1963. The Scattering of Electromagnetic Waves from Rough Surfaces. MacMillan, New York.Google ScholarGoogle Scholar
  7. Bloomenthal, J. 1985. Modeling the mighty maple. Computer Graphics (SIGGRAPH '85 Proceedings) 19, 305--311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chan, E., and Durand, F. 2003. Rendering fake soft shadows with smoothies. Proc. of the Eurographics Symposium on Rendering 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cook, R. L., and Torrance, K. E. 1982. A reflectance model for computer graphics. ACM Transactions on Graphics 1(1) (Jan.), 7--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cook, Torrance, K. E. and Sparrow, E. M. 1967. Theory for Off-Specular Reflection from Roughened Surfaces. Journal of the Optical Society of America 57(9) (sep.), 1105-1114.Google ScholarGoogle Scholar
  11. de Reffye, P., Edelin, C., Francon, J., Jaeger, M., and Puech, C. 1988. Plant models faithful to botanical structure and development. Computer Graphics, Proceedings of Siggraph'88 22(4), 151--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Demko, S., Hadges, L., and Naylor, B. 1985. Construction of fractal objects with iterated function system. Computer Graphics 19(3), 271--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Deussen, O., Hanrahan, P. M., Lintermann, B., Mech, R., Pharr, M., and Prusinkiewicz, P. 1998. Realistic modeling and rendering of plant ecosystems. In Proceedings of SIGGRAPH 98, 275--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Franzke, O., and Deussen, O. 2003. Rendering plant leaves faithfully. SIGGRAPH '03 Sketches. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fuhrer, M., Jensen, H.W., and Prusinkiewicz, P. 2004. Modeling hairy plants. In Proc. of Pacific Graphics '04. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ganapol, B., Johnson, L., Hammer, P., Hlavka, C., and Peterson, D. 1998. LEAFMOD: A new within-leaf radiative transfer model. Remote Sensing of Environment 63, 182 -- 193.Google ScholarGoogle ScholarCross RefCross Ref
  17. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. ACM Transactions on Graphics 22(3) (July), 749--758. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Golomb, S. 1966. Run-Length Encodings. IEEE Transactions on Information Theory 12, 399--401.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Govaerts, Y., Verstraete, S. J. M., and Ustin, S. 1996. Threedimensional radiation transfer modeling in a dycotyledon leaf. Applied Optics 35(33), 6585 -- 6598.Google ScholarGoogle ScholarCross RefCross Ref
  20. Hanrahan, P., and Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. Proceeding of Siggraph '93, 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jacquemoud, S., and Ustin, S. 2001. Leaf optical properties: A state of the art. In Proc. 8th Int. Symp. Physical Measurements and Signatures in Remote Sensing, 223--232.Google ScholarGoogle Scholar
  22. Kajiya, J. T. 1985. Anisotropic reflection models. In Computer Graphics (Proceedings of SIGGRAPH 85), vol. 19, 15--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kautz, J., Sloan, P.-p., and Snyder, J. 2002. Fast, arbitrary BRDF shading for low-frequency lighting using spherical harmonics. Proceedings of the 12th Eurographics Workshop on Rendering, 301--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ma, Q., Nishimura, A., Phu, P., and Kuga, Y. 1990. Transmission, reflection and depolarization of an optical wave for a single leaf. IEEE Trans. on Geoscience and Remote Sensing 28, 5 (september), 865 -- 872.Google ScholarGoogle Scholar
  25. Max, N. 1996. Hierarchical rendering of trees from precomputed multilayer z-buffers. In Eurographics Rendering Workshop 1996, 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Meyer, A., Neyret, F., and Poulin, P. 2001. Interactive rendering of trees with shading and shadows. Proceedings of the 12th Eurographics Workshop on Rendering Techniques, 183--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. All-frequency shadows using non-linear wavelet lighting approximation. ACM Transaction on Graphics 22(3) (July), 376--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2004. Triple product wavelet integrals for all-frequency relighting. ACM Transaction on Graphics 23(3) (August), 477--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Oren, M., and Nayar, S. K. 1994. Generalization of Lambert's reflectance model. In Computer Graphics (Proceedings of SIGGRAPH 94), 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Poulin, P., and Fournier, A. 1990. A model for anisotropic reflection. In Computer Graphics (Proceedings of SIGGRAPH 90), vol. 24, 273--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Prusinkiewicz, P., Lindenmayer, A., and Hanan, J. 1988. Development models of herbaceous plants for computer imagery purposes. In Computer Graphics (Proceedings of SIGGRAPH 1988), 141--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Prusinkiewicz, P., Muendermann, L., Karwowski, R., and Lane, B. 2001. The use of positional information in the modeling of plants. Proceedings of Siggraph'01 (August), 289--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Qin, X., Nakamae, E., Tadamura, K., and Nagai, Y. 2003. Fast photo-realistic rendering of trees in daylight. Computer Graphics Forum 22(3), 243--252.Google ScholarGoogle ScholarCross RefCross Ref
  34. Reche, A., Martin, I., and Drettakis, G. 2004. Volumetric reconstruction and interactive rendering of trees from photographs. ACM Transactions on Graphics 23(3) (July), 720--727. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Siewert, C. E. 1978. The fn method for solving radiative-transfer problems in plane geometry. Astrophysics and Space Science 58, 131--137.Google ScholarGoogle ScholarCross RefCross Ref
  36. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Transaction on Graphics 21(3), 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sloan, P.-P.,Hall, J., Hart, J., and Snyder, J. 2003. Clustered principal components for precomputed radiance transfer. ACM Transaction on Graphics 22(3) (July), 382--391. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Soler, C., and Sillion, F. 1998. Fast calculation of soft shadow textures using convolution. Proceeding of SIGGRAPH '98 (July), 321--332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Stogryn, A. 1967. Electromagnetic scattering from rough, finitely conducting surface. Radio Sciences 2 (New Series), 4, 415--428.Google ScholarGoogle Scholar
  40. Vogelmann, T. C. 1993. Plant tissue optics. Annual Review of Plant Physiology and Plant Molecular Biology 44, 231--251.Google ScholarGoogle ScholarCross RefCross Ref
  41. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. Proceedings of SIGGRAPH'92, 265--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Weber, J., and Penn, J. 1995. Creation and rendering of realistic trees. Computer Graphics (Proceeding of SIGGRAPH1995), 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Real-time rendering of plant leaves

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGGRAPH '06: ACM SIGGRAPH 2006 Courses
            July 2006
            83 pages
            ISBN:1595933646
            DOI:10.1145/1185657

            Copyright © 2006 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 30 July 2006

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • Article

            Acceptance Rates

            Overall Acceptance Rate1,822of8,601submissions,21%

            Upcoming Conference

            SIGGRAPH '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader