skip to main content
article

Cooperation through self-assembly in multi-robot systems

Authors Info & Claims
Published:01 December 2006Publication History
Skip Abstract Section

Abstract

This article illustrates the methods and results of two sets of experiments in which a group of mobile robots, called s-bots, are required to physically connect to each other, that is, to self-assemble, to cope with environmental conditions that prevent them from carrying out their task individually. The first set of experiments is a pioneering study on the utility of self-assembling robots to address relatively complex scenarios, such as cooperative object transport. The results of our work suggest that the s-bots possess hardware characteristics which facilitate the design of control mechanisms for autonomous self-assembly. The control architecture we developed proved particularly successful in guiding the robots engaged in the cooperative transport task. However, the results also showed that some features of the robots' controllers had a disruptive effect on their performances. The second set of experiments is an attempt to enhance the adaptiveness of our multi-robot system. In particular, we aim to synthesise an integrated (i.e., not-modular) decision-making mechanism which allows the s-bot to autonomously decide whether or not environmental contingencies require self-assembly. The results show that it is possible to synthesize, by using evolutionary computation techniques, artificial neural networks that integrate both the mechanisms for sensory-motor coordination and for decision making required by the robots in the context of self-assembly.

References

  1. Baldassarre, G., Nolfi, S., and Parisi, D. 2003. Evolution of collective behavior in a team of physically linked robots. In Proceedings of the Second European Workshop on Evolutionary Robotics. R. Gunther, A. Guillot, and J.-A. Meyer, Eds. Springer Verlag, Berlin, Germany, 581--592. Google ScholarGoogle Scholar
  2. Baldassarre, G., Parisi, D., and Nolfi, S. 2004. Coordination and behavior integration in cooperating simulated robots. In From Animals to Animats S. Schaal, A. Ijspeert, A. Billard, S. Vijayakamur, J. Hallam, and J.-A. Meyer, Eds. MIT Press, Cambridge, MA, 385--394.Google ScholarGoogle Scholar
  3. Beer, R. D. 1995. A dynamical systems perspective on agent-environment interaction. Artificial Intell. 72, 173--215. Google ScholarGoogle Scholar
  4. Bererton, C. and Khosla, P. 2000. Towards a team of robots with repair capabilities: A visual docking systems. In Proceedings of the 7th International Symposium on Experimental Robotics, (ISER). Lecture Notes in Control and Information Sciences, vol. 271. Springer, Berlin, Germany, 333--342. Google ScholarGoogle Scholar
  5. Bererton, C. and Khosla, P. 2001. Towards a team of robots with reconfiguration and repair capabilities. In Proceedings of the IEEE International Conference on Robotics and Automation. Vol. 3. IEEE Computer Society Press, Los Alamitos, CA, 2923--2928.Google ScholarGoogle Scholar
  6. Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., and Nguyen, T. 2005. Programmable parts: A demonstration of the grammatical approach to self-organization. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE Computer Society Press, Los Alamitos, CA, 2644--2651.Google ScholarGoogle Scholar
  7. Brown, H., Weghe, J. V., Bererton, C., and Khosla, P. 2002. Millibot trains for enhanced mobility. IEEE/ASME Trans. Mechatron. 7, 452--461.Google ScholarGoogle Scholar
  8. Castano, A., Shen, W.-M., and Will, P. 2000. CONRO: Towards deployable robots with inter-robots metamorphic capabilities. Auton. Robots 8, 3, 309--324. Google ScholarGoogle Scholar
  9. Damoto, R., Kawakami, A., and Hirose, S. 2001. Study of super-mechano colony: concept and basic experimental set-up. Advanced Robotics 15, 4, 391--408.Google ScholarGoogle Scholar
  10. Dorigo, M., Trianni, V., Sahin, E., Groß, R., Labella, T. H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., and Gambardella, L. M. 2004. Evolving self-organizing behaviors for a swarm-bot. Auton. Robots 17, 2--3, 223--245. Google ScholarGoogle Scholar
  11. Fukuda, T. and Nakagawa, S. 1987. A dynamically reconfigurable robotic system (concept of a system and optimal configurations). In Proceedings of the IEEE International Conference on Industrial Electronics, Control and Instrumentation. IEEE Computer Society Press, Los Alamitos, CA, 588--595.Google ScholarGoogle Scholar
  12. Fukuda, T., Nakagawa, S., Kawauchi, Y., and Buss, M. 1988. Self organizing robots based on cell structures---CEBOT. In Proceedings of the IEEE International Workshop on Intelligent Robots. IEEE Computer Society Press, Los Alamitos, CA, 145--150.Google ScholarGoogle Scholar
  13. Fukuda, T. and Ueyama, T. 1994. Cellular Robotics and Micro Robotic Systems. World Scientific Publishing, London, UK. Google ScholarGoogle Scholar
  14. Fukuda, T., Ueyama, T., and Kawauchi, Y. 1990. Self-organization in cellular robotic system (CEBOT) for space application with knowledge allocation method. In Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space. Kobe, Japan, 101--104.Google ScholarGoogle Scholar
  15. Fukuda, T., Ueyama, T., and Sekiyama, K. 1995. Artificial Intelligence in Industrial Decision Making, Conrol and Automation. (Chapter 8). Kluwer Academic Publishers, Dordrecht, The Netherlands.Google ScholarGoogle Scholar
  16. Griffith, S., Goldwater, D., and Jacobson, J. M. 2005. Self-replication from random parts. Nature 437, 7059, 636.Google ScholarGoogle Scholar
  17. Griffith, S. T. 2004. Growing machines. Ph.D. thesis, MIT, Cambridge, MA.Google ScholarGoogle Scholar
  18. Groß, R., Bonani, M., Mondada, F., and Dorigo, M. 2006. Autonomous self-assembly in swarm-bots. IEEE Trans. Robot. 22, 5. Google ScholarGoogle Scholar
  19. Groß, R., Bonani, M., Mondada, F., and Dorigo, M. 2006. Autonomous self-assembly in a swarm-bot. In Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE'05), K. Murase, K. Sekiyama, N. Kubota, T. Naniwa, and J. Sitte, Eds. Springer, Berlin, Germany, 314--322.Google ScholarGoogle Scholar
  20. Groß, R. and Dorigo, M. 2004. Group transport of an object to a target that only some group members may sense. In Proceedings of the 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), X. Yao, E. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. Rowe, P. T. A. Kabán, and H.-P. Schwefel, Eds. Lecture Notes in Computer Science, vol. 3242. Springer Verlag, Berlin, Germany, 852--861.Google ScholarGoogle Scholar
  21. Harvey, I., Husband, P., Thompson, A., and Jakobi, N. 1997. Evolutionary Robotics: The Sussex approach. Robotics Auton. Syst. 20, 205--224.Google ScholarGoogle Scholar
  22. Hirose, S. 2001. Super mechano-system: New perspectives for versatile robotic systems. In Proceedings of the 7th International Symposium on Experimental Robotics, (ISER), D. Rus and S. Singh, Eds. Lecture Notes in Control and Information Sciences, vol. 271. Springer, Berlin, Germany, 249--258. Google ScholarGoogle Scholar
  23. Hirose, S., Damoto, R., and Kawakami, A. 2000. Study of super-mechano-colony (concept and basic experimental setup). In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol. 3. IEEE Computer Society Press, Los Alamitos, CA, 1664--1669.Google ScholarGoogle Scholar
  24. Hirose, S., Shirasu, T., and Fukushima, E. 1996. Proposal for cooperative robot “Gunryu” composed of autonomous segments. Robotics Auton. Syst. 17, 107--118.Google ScholarGoogle Scholar
  25. Jørgensen, M. W., Østergaard, E. H., and Lund, H. H. 2004. Modular ATRON: Modules for a self-reconfigurable robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol. 2. IEEE Computer Society Press, Los Alamitos, CA, 2068--2073.Google ScholarGoogle Scholar
  26. Kube, C. R. and Bonabeau, E. 2000. Cooperative transport by ants and robots. Robotics Auton. Syst. 30, 1--2, 85--101.Google ScholarGoogle Scholar
  27. Mitchell, M. 1996. An Introduction to Genetic Algorithms. MIT, Cambridge, MA. Google ScholarGoogle Scholar
  28. Mondada, F., Gambardella, L. M., Floreano, D., Nolfi, S., Deneubourg, J.-L., and Dorigo, M. 2005. The cooperation of swarm-bots: Physical interactions in collective robotics. IEEE Robotics Automation Mag. 12, 2, 21--28.Google ScholarGoogle Scholar
  29. Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. V., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L. M., and Dorigo, M. 2004. SWARM-BOT: A new distributed robotic concept. Auton. Robots 17, 2--3, 193--221. Google ScholarGoogle Scholar
  30. Motomura, K., Kawakami, A., and Hirose, S. 2005. Development of arm equipped single wheel rover: Effective arm-posture-based steering method. Auton. Robots 18, 2, 215--229.Google ScholarGoogle Scholar
  31. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., and Kokaji, S. 2002. M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7, 4, 431--441.Google ScholarGoogle Scholar
  32. Nolfi, S. and Floreano, D. 2000. Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press/Bradford Books, Cambridge, MA. Google ScholarGoogle Scholar
  33. O'Grady, R., Groß, R., and Dorigo, M. 2005. Self-assembly on demand in a group of physical autonomous mobile robots navigating rough terrain. In Proceedings of the 8th European Conference on Artificial Life (ECAL05), M. Capcarrere, A. Freitas, P. Bentley, C. Johnson, and J. Timmis, Eds. Lecture Notes in Artificial Intelligence (LNAI), vol. 3630. Springer-Verlag, Berlin, Germany, 272--281. Google ScholarGoogle Scholar
  34. Rubenstein, M., Payne, K., Will, P., and Shen, W.-M. 2004. Docking among indepenpent and autonomous CONRO self-reconfigurable robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'04). Vol. 3. IEEE Computer Society Press, Los Alamitos, CA, 2877--2882.Google ScholarGoogle Scholar
  35. Rus, D. and Vona, M. 2001. Crystalline robots: Self-reconfiguration with compressible unit modules. Auton. Robots 10, 1, 107--124. Google ScholarGoogle Scholar
  36. Trianni, V., Nolfi, S., and Dorigo, M. 2006. Cooperative hole avoidance in a swarm-bot. Robotics Auton. Syst. 54, 2, 97--103.Google ScholarGoogle Scholar
  37. Trianni, V., Tuci, E., and Dorigo, M. 2004. Evolving functional self-assembling in a swarm of auton. robots. In Proceedings of the 8th International Conference on Simulation of Adaptive Behavior (SAB'04). S. Schaal, A. Ijspeert, A. Billard, S. Vijayakamur, J. Hallam, and J.-A. Meyer, Eds. MIT Press, Cambridge, MA, 405--414.Google ScholarGoogle Scholar
  38. White, P. J., Kopanski, K., and Lipson, H. 2004. Stochastic self-reconfigurable cellular robotics. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'04). Vol. 3. IEEE Computer Society Press, Los Alamitos, CA, 2888--2893.Google ScholarGoogle Scholar
  39. White, P. J., Zykov, V., Bongard, J., and Lipson, H. 2005. Three dimensional stochastic reconfiguration of modular robots. In Proceedings of the Robotics: Science and Systems Conference. MIT, Cambridge, MA, 161--168.Google ScholarGoogle Scholar
  40. Yim, M., Duff, D. G., and Roufas, K. D. 2000. PolyBot: a modular reconfigurable robot. In Proceedings of the IEEE International Conference on Robotics and Automation. Vol. 1. IEEE Computer Society Press, Los Alamitos, CA, 514--520.Google ScholarGoogle Scholar
  41. Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., and Homans, S. 2003. Modular reconfigurable robots in space applications. Auton. Robots 14, 2-3, 225--237. Google ScholarGoogle Scholar
  42. Yim, M., Zhang, Y., and Duff, D. 2002. Modular robots. IEEE Spectrum 39, 2, 30--34. Google ScholarGoogle Scholar
  43. Yim, M., Zhang, Y., Roufas, K., Duff, D., and Eldershaw, C. 2002. Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Trans. Mechatron. 7, 4, 442--451.Google ScholarGoogle Scholar
  44. Zykov, V., Mytilinaios, E., Adams, B., and Lipson, H. 2005. Self-reproducing machines. Nature 435, 7039, 163.Google ScholarGoogle Scholar

Index Terms

  1. Cooperation through self-assembly in multi-robot systems

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader