skip to main content
10.5555/1218112.1218134acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
Article

Bayesian ideas and discrete event simulation: why, what and how

Published: 03 December 2006 Publication History

Abstract

Bayesian methods are useful in the simulation context for several reasons. They provide a convenient and useful way to represent uncertainty about alternatives (like manufacturing system designs, service operations, or other simulation applications) in a way that quantifies uncertainty about the performance of systems, or about inputs parameters of those systems. They also can be used to improve the efficiency of discrete optimization with simulation and response surface methods. Bayesian methods work well with other decision theoretic tools, and can therefore provide a link from traditional operations-level experiments to higher-level managerial decision-making needs, in addition to improving the efficiency of computer experiment

References

[1]
Andradóttir, S., and P. W. Glynn. 2004. Computing Bayesian means using simulation. Georgia Tech, ISYE Technical Report.
[2]
Barlow, R. E., and M. B. Mendel. 1992. De Finetti-type representations for life distributions. Journal of the American Statistical Association 87:1116--1122.
[3]
Barton, R. R., and L. W. Schruben. 2001. Simulating real systems. In submission.
[4]
Berger, J. O. 1994. An overview of robust Bayesian analysis. TEST 3:5--124.
[5]
Berger, J. O., and L. R. Pericchi. 1996. The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association 91:109--122.
[6]
Berk, R. 1966. Limiting behaviour of posterior distributions when the model is incorrect. Annals of Mathematical Statistics 37 (1): 51--58.
[7]
Bernardo, J. 1979. Expected information as expected utility. Annals of Statistics 7:686--690.
[8]
Bernardo, J. M., and A. F. M. Smith. 1994. Bayesian theory. Chichester, UK: Wiley.
[9]
Billingsley, P. 1986. Probability and Measure. 2nd ed. New York: John Wiley & Sons, Inc.
[10]
Branke, J., S. E. Chick, and C. Schmidt. 2005. Selecting a selection procedure.
[11]
Chen, C.-H. 1996. A lower bound for the correct subsetselection probability and its application to discrete event simulations. IEEE Transactions on Automatic Control 41 (8): 1227--1231.
[12]
Chen, C.-H., E. Yücesan, L. Dai, and H. Chen. 2005. Efficient computation of optimal budget allocation for discrete event simulation experiment. IIE Transactions: to appear.
[13]
Cheng, R. C. H. 1999. Regression metamodelling in simulation using Bayesian methods. In Proceedings of the 1999 Winter Simulation Conference, ed. P. A. Farrington, H. B. Nembhard, D. Sturrock, and G. Evans, 330--335.
[14]
Cheng, R. C. H., and W. Holland. 1997. Sensitivity of computer simulation experiments to errors in input data. Journal of Statistical Computing and Simulation 57:219--241.
[15]
Chick, S. E. 1997. Bayesian analysis for simulation input and output. In Proceedings of the 1997 Winter Simulation Conference, ed. S. Andradóttir, K. Healy, D. Withers, and B. Nelson, 253--260.
[16]
Chick, S. E. 2001. Input distribution selection for simulation experiments: Accounting for input uncertainty. Operations Research 49 (5): 744--758.
[17]
Chick, S. E. 2004. Bayesian methods for discrete event simulation. In Proceedings of the 2004 Winter Simulation Conference, ed. R. Ingalls, M. Rossetti, J. Smith, and B. Peters, 89--100.
[18]
Chick, S. E. 2006. Subjective probability and Bayesian methodology. In Handbook in Operations Research and Management Science: Simulation, ed. S. Henderson and B. Nelson. Elsevier.
[19]
Chick, S. E., and N. Gans. 2005. The economics of simulation selection procedures. Technical report, INSEAD, Technology and Operations Management Area working paper.
[20]
Chick, S. E., and K. Inoue. 2001a. New two-stage and sequential procedures for selecting the best simulated system. Operations Research 49 (5): 732--743.
[21]
Chick, S. E., and K. Inoue. 2001b. New procedures for identifying the best simulated system using common random numbers. Management Science 47 (8): 1133--1149.
[22]
Chick, S. E., and K. Inoue. 2002. Corrigendum: New selection procedures. Operations Research 50 (3): 566.
[23]
de Finetti, B. 1990. Theory of Probability, v. 2. New York: John Wiley & Sons, Inc.
[24]
de Groot, M. H. 1970. Optimal statistical decisions. New York: McGraw-Hill.
[25]
Devroye, L. 2006. Nonuniform random variate generation. In Handbook in Operations Research and Management Science: Simulation, ed. S. G. Henderson and B. L. Nelson. Elsevier.
[26]
Draper, D. 1995. Assessment and propogation of model uncertainty (with discussion). Journal of the Royal Statistical Society, Series B 57 (1): 45--97.
[27]
Edwards, A. W. F. 1984. Likelihood. Cambridge University Press.
[28]
Evans, M., and T. Swartz. 1995. Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems. Statistical Science 10 (3): 254--272.
[29]
George, E. I., and R. E. McCulloch. 1996. Stochastic search variable selection. In Markov Chain Monte Carlo in Practice, ed. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, 203--214. London: Chapman and Hall.
[30]
Gilks, W. R., S. Richardson, and D. J. Spiegelhalter. 1996. Markov chain Monte Carlo in practice. London: Chapman and Hall.
[31]
Glynn, P. 1986. Problems in Bayesian analysis of stochastic simulation. In Proceedings of the 1986 Winter Simulation Conference, ed. J. R. Wilson, J. O. Henriksen, and S. D. Roberts, 376--383.
[32]
He, D., S. E. Chick, and C.-H. Chen. 2006. The opportunity cost and OCBA selection procedures in ordinal optimization. Submitted.
[33]
Jaynes, E. T. 1983. E. T. Jaynes: Papers on probability, statistics and statistical physics. Dordrecht, Holland: D. Reidel Publishing Co.
[34]
Jeffreys, H. 1946. An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London Set A 186:453--461.
[35]
Kahneman, D., P. Slovic, and A. Tversky. 1982. Judgment under uncertainty: Heuristics and biases. Cambridge: Cambridge University Press.
[36]
Kass, R. E., and L. Wasserman. 1996. The selection of prior distributions by formal rules. Journal of the American Statistical Association 91 (435): 1343--1370.
[37]
Kennedy, M., and A. O'Hagan. 2001. Bayesian calibration of computer models (with discussion). Journal of the Royal Statistical Society B 63:425--464.
[38]
Laplace, P. S. 1812. Theorie analytique des probabilites. Paris: Courcier.
[39]
Law, A. M., and W. D. Kelton. 2000. Simulation modeling & analysis. 3rd ed. New York: McGraw-Hill, Inc.
[40]
Lee, S.-H., and P. Glynn. 1999. Computing the distribution function of a conditional expectation via Monte Carlo: Discrete conditioning spaces. In Proceedings of the 1999 Winter Simulation Conference, ed. P. A. Farrington, H. B. Nembhard, D. Sturrock, and G. Evans, 1654--1663.
[41]
Lindley, D. 1957. A statistical paradox. Biometrika 44:187--192.
[42]
Ng, S.-H., and S. E. Chick. 2001. Reducing input distribution uncertainty for simulations. In Proceedings of the 2001 Winter Simulation Conference, ed. B. Peters, J. Smith, M. Rohrer, and D. Madeiros, 364--371.
[43]
Ng, S.-H., and S. E. Chick. 2004. Design of follow-up experiments for improving model discrimination and parameter estimation. Naval Research Logistics 51 (8):1129--1148.
[44]
Ng, S.-H., and S. E. Chick. 2006. Reducing parameter uncertainty for stochastic systems. ACM Transactions on Modeling and Computer Simulation 15 (1): in press.
[45]
Porteus, E. L. 2002. Stochastic inventory theory. Stanford University Press.
[46]
Raftery, A. E., D. Madigan, and J. A. Hoeting. 1997. Bayesian model averaging for linear regression models. Journal of the American Statistical Association 92(437): 179--191.
[47]
Santner, T. J., B. J. Williams, and W. I. Notz. 2003. The design and analysis of computer experiments. New York: Springer.
[48]
Savage, L. J. 1972. The foundations of statistics. New York: Dover Publications, Inc.
[49]
Smith, A. F. M., and I. Verdinelli. 1980. A note on Bayesian design for inference using hierarchical linear model. Biometrika 67 (3): 613--619.
[50]
Smith, B. J. 2004. Bayesian output analysis program (BOA) v. 1.1 user's manual. Technical report, Univ. Iowa, <http://www.public-health.uiowa.edu/boa/>.
[51]
Spiegelhalter, D. J., N. G. Best, W. R. Gilks, and H. Inskip. 1996. Hepatitis B: a case study in MCMC methods. In Markov Chain Monte Carlo in Practice, ed. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, 21--44. London: Chapman and Hall.
[52]
Steckley, S. G., and S. G. Henderson. 2003. A kernel approach to estimating the density of a conditional expectation. In Proceedings of the 2003 Winter Simulation Conference, ed. S. Chick, P. Sánchez, D. Ferrin, and D. Morrice, 383--391.
[53]
Tanner, M. A. 1996. Tools for statistical inference: Methods for exploration of posterior distributions and likelihood functions. 3rd ed. Springer.
[54]
van Beers, W., and J. P. C. Kleijnen. 2003. Kriging for interpolation in random simulation. Journal of the Operational Research Society 54:255--262.
[55]
van Beers, W. C., and J. P. C. Kleijnen. 2004. Kriging interpolation in simulation: A survey. In Proceedings of the 2004 Winter Simulation Conference, ed. R. Ingalls, M. Rossetti, J. Smith, and B. Peters.
[56]
Winston, W. 2000. Financial models using simulation and optimization. 2nd ed. Palisade Corp.
[57]
Zouaoui, F., and J. R. Wilson. 2003. Accounting for parameter uncertainty in simulation input modeling. IIE Transactions 35:781--792.
[58]
Zouaoui, F., and J. R. Wilson. 2004. Accounting for inputmodel and input-parameter uncertainties in simulation. IIE Transactions 36 (11): 1135--1151.

Cited By

View all
  • (2023)Statistical Uncertainty Quantification for Expensive Black-Box Models: Methodologies and Input Uncertainty ApplicationsProceedings of the Winter Simulation Conference10.5555/3643142.3643266(1501-1515)Online publication date: 10-Dec-2023
  • (2020)Calibrating input parameters via eligibility setsProceedings of the Winter Simulation Conference10.5555/3466184.3466425(2114-2125)Online publication date: 14-Dec-2020
  • (2020)On the scarcity of observations when modelling random inputs and the quality of solutions to stochastic optimisation problemsProceedings of the Winter Simulation Conference10.5555/3466184.3466424(2105-2113)Online publication date: 14-Dec-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSC '06: Proceedings of the 38th conference on Winter simulation
December 2006
2429 pages
ISBN:1424405017

Sponsors

  • IIE: Institute of Industrial Engineers
  • ASA: American Statistical Association
  • IEICE ESS: Institute of Electronics, Information and Communication Engineers, Engineering Sciences Society
  • IEEE-CS\DATC: The IEEE Computer Society
  • SIGSIM: ACM Special Interest Group on Simulation and Modeling
  • NIST: National Institute of Standards and Technology
  • (SCS): The Society for Modeling and Simulation International
  • INFORMS-CS: Institute for Operations Research and the Management Sciences-College on Simulation

Publisher

Winter Simulation Conference

Publication History

Published: 03 December 2006

Check for updates

Qualifiers

  • Article

Conference

WSC06
Sponsor:
  • IIE
  • ASA
  • IEICE ESS
  • IEEE-CS\DATC
  • SIGSIM
  • NIST
  • (SCS)
  • INFORMS-CS
WSC06: Winter Simulation Conference 2006
December 3 - 6, 2006
California, Monterey

Acceptance Rates

WSC '06 Paper Acceptance Rate 177 of 252 submissions, 70%;
Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Statistical Uncertainty Quantification for Expensive Black-Box Models: Methodologies and Input Uncertainty ApplicationsProceedings of the Winter Simulation Conference10.5555/3643142.3643266(1501-1515)Online publication date: 10-Dec-2023
  • (2020)Calibrating input parameters via eligibility setsProceedings of the Winter Simulation Conference10.5555/3466184.3466425(2114-2125)Online publication date: 14-Dec-2020
  • (2020)On the scarcity of observations when modelling random inputs and the quality of solutions to stochastic optimisation problemsProceedings of the Winter Simulation Conference10.5555/3466184.3466424(2105-2113)Online publication date: 14-Dec-2020
  • (2019)Random perturbation and bagging to quantify input uncertaintyProceedings of the Winter Simulation Conference10.5555/3400397.3400423(320-331)Online publication date: 8-Dec-2019
  • (2018)Constructing simulation output intervals under input uncertainty via data sectioningProceedings of the 2018 Winter Simulation Conference10.5555/3320516.3320707(1551-1562)Online publication date: 9-Dec-2018
  • (2016)Optimal computing budget allocation with input uncertaintyProceedings of the 2016 Winter Simulation Conference10.5555/3042094.3042210(839-846)Online publication date: 11-Dec-2016
  • (2016)Advanced tutorialProceedings of the 2016 Winter Simulation Conference10.5555/3042094.3042128(178-192)Online publication date: 11-Dec-2016
  • (2015)Simulation selection for empirical model comparisonProceedings of the 2015 Winter Simulation Conference10.5555/2888619.2889124(3777-3788)Online publication date: 6-Dec-2015
  • (2013)Upper bounds on the Bayes-optimal procedure for ranking & selection with independent normal priorsProceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World10.5555/2675983.2676095(877-887)Online publication date: 8-Dec-2013
  • (2012)Optimization via simulation with Bayesian statistics and dynamic programmingProceedings of the Winter Simulation Conference10.5555/2429759.2429767(1-16)Online publication date: 9-Dec-2012
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media