skip to main content
10.5555/1218112.1218166acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
Article

Response gradient estimation using mathematical programming models of discrete-event system sample paths

Published: 03 December 2006 Publication History

Abstract

This paper illustrates the use of mathematical programming in computing gradient estimators. Consistency property of these estimators is established under the usual assumptions for IPA gradient estimator consistency. A finite difference tolerance limit is introduced. For complex discrete-event systems, more concise linear programming representations are developed. These new representations provide a direct way of calculating gradient estimates.

References

[1]
Cao, X. R. (1985). Convergence of parameter sensitivity estimates in a stochastic experiment. IEEE Transactions on Automatic Control 30(9): 845--853.
[2]
Cao, X. R. and H.-F. Chen (1997). Perturbation realization, potentials, and sensitivity analysis of Markov processes. Automatic Control, IEEE Transactions on 42(10): 1382--1393.
[3]
Chan, W. K. V. (2005). Mathematical Representations of Discrete-Event System Dynamics. Ph.D. dissertation, University of California, Berkeley.
[4]
Chan, W. K. V. and L. W. Schruben (2003). Properties of discrete event systems from their mathematical programming representations. Proceedings of the 2003 Winter Simulation Conference (IEEE Cat. No. 03CH7499), ed. Chick, S. E., Sanchez, P. J., Ferrin, D., and Morrice, D. J., IEEE. Part Vol.1, 2003, pp. 496--502 Vol.1. Piscataway, NJ, USA.
[5]
Freimer, M. and L. Schruben (2001). Graphical representation of IPA estimation. Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304), ed. Peters, B. A., Smith, J. S., Medeiros, D. J., Rohrer, M. W., IEEE. Part Vol.1, 2001, pp.422--7 vol.1. Piscataway, NJ, USA.
[6]
Fu, M. and J.-Q. Hu (1997). Conditional Monte Carlo: gradient estimation and optimization applications, Kluwer Academic Publishers, Boston.
[7]
Fu, M. C. and J. Q. Hu (1991). Consistency of infinitesimal perturbation analysis for the GI/G/m queue. European Journal of Operational Research 54(1): 121--39.
[8]
Gal, T. (1979). Postoptimal Analyses, Parametric Programming and Related Topics, McGraw-Hill, London.
[9]
Glasserman, P. (1991a). Gradient Estimation via Perturbation Analysis, Kluwer Academic Publishers, Boston.
[10]
Glasserman, P. (1991b). Structural conditions for perturbation analysis of queuing-systems. Journal of the Association for Computing Machinery 38(4): 1005--1025.
[11]
Gong, W. B. and Y. C. Ho (1987). Smoothed (conditional) perturbation analysis of discrete event dynamic-systems. Ieee Transactions on Automatic Control 32(10): 858--866.
[12]
Ho, Y. C. and X. Cao (1991). Perturbation Analysis of Discrete Event Dynamic Systems, Kluwer Academic Publishers, Boston.
[13]
Ho, Y. C., M. A. Eyler and T. T. Chien (1979). A gradient technique for general buffer storage design in a production line. International Journal of Production Research 17(6): 557--580.
[14]
Homem-de-Mello, T., A. Shapiro and M. L. Spearman (1999). Finding optimal material release times using simulation-based optimization. Management Science 45(1): 86--102.
[15]
Lindley, D. V. (1952). The theory of queues with a single server. Proceedings of the Cambridge Philosophical Society 48(2): 277--289.
[16]
Schruben, L. W. (2000). Mathematical programming models of discrete event system dynamics. 2000 Winter Simulation Conference Proceedings (Cat. No. 00CH37165), ed. Joines, J. A., Barton, R. R., Kang, K., and Fishwick, P. A., IEEE. Part vol.1, 2000, pp.381--5 vol.1. Piscataway, NJ, USA.
[17]
Suri, R. (1987). Infinitesimal perturbation analysis for general discrete event systems. Journal of the ACM 34(3): 686--717.
[18]
Suri, R. (1989). Perturbation analysis - the state of the art and research issues explained Via the GI/G/1 Queue. Proceedings of the IEEE 77(1): 114--137.
[19]
Suri, R. and M. A. Zazanis (1988). Perturbation analysis gives strongly consistent sensitivity estimates for the M/G/1 queue. Management Science 34(1): 39--64.

Cited By

View all
  • (2017)History of seeking better solutions, aka simulation optimizationProceedings of the 2017 Winter Simulation Conference10.5555/3242181.3242192(1-27)Online publication date: 3-Dec-2017
  • (2013)Sensitivity analysis of linear programming formulations for G/G/m queueProceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World10.5555/2675983.2676070(667-677)Online publication date: 8-Dec-2013
  • (2009)Simulation optimization using metamodelsWinter Simulation Conference10.5555/1995456.1995494(230-238)Online publication date: 13-Dec-2009
  • Show More Cited By
  1. Response gradient estimation using mathematical programming models of discrete-event system sample paths

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    WSC '06: Proceedings of the 38th conference on Winter simulation
    December 2006
    2429 pages
    ISBN:1424405017

    Sponsors

    • IIE: Institute of Industrial Engineers
    • ASA: American Statistical Association
    • IEICE ESS: Institute of Electronics, Information and Communication Engineers, Engineering Sciences Society
    • IEEE-CS\DATC: The IEEE Computer Society
    • SIGSIM: ACM Special Interest Group on Simulation and Modeling
    • NIST: National Institute of Standards and Technology
    • (SCS): The Society for Modeling and Simulation International
    • INFORMS-CS: Institute for Operations Research and the Management Sciences-College on Simulation

    Publisher

    Winter Simulation Conference

    Publication History

    Published: 03 December 2006

    Check for updates

    Qualifiers

    • Article

    Conference

    WSC06
    Sponsor:
    • IIE
    • ASA
    • IEICE ESS
    • IEEE-CS\DATC
    • SIGSIM
    • NIST
    • (SCS)
    • INFORMS-CS
    WSC06: Winter Simulation Conference 2006
    December 3 - 6, 2006
    California, Monterey

    Acceptance Rates

    WSC '06 Paper Acceptance Rate 177 of 252 submissions, 70%;
    Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 07 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2017)History of seeking better solutions, aka simulation optimizationProceedings of the 2017 Winter Simulation Conference10.5555/3242181.3242192(1-27)Online publication date: 3-Dec-2017
    • (2013)Sensitivity analysis of linear programming formulations for G/G/m queueProceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World10.5555/2675983.2676070(667-677)Online publication date: 8-Dec-2013
    • (2009)Simulation optimization using metamodelsWinter Simulation Conference10.5555/1995456.1995494(230-238)Online publication date: 13-Dec-2009
    • (2008)Simulation optimization with mathematical programming representation of discrete event systemsProceedings of the 40th Conference on Winter Simulation10.5555/1516744.1516987(1393-1400)Online publication date: 7-Dec-2008
    • (2008)Mathematical programming representations for state-dependent queuesProceedings of the 40th Conference on Winter Simulation10.5555/1516744.1516839(495-501)Online publication date: 7-Dec-2008

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media