skip to main content
10.5555/1218112.1218245acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
Article

Applying model reference adaptive search to American-style option pricing

Published: 03 December 2006 Publication History

Abstract

This paper considers the application of stochastic optimization methods to American-style option pricing. We apply a randomized optimization algorithm called Model Reference Adaptive Search (MRAS) to pricing American-style options by parameterizing the early exercise boundary. Numerical results are provided for pricing American-style call and put options written on underlying assets following geometric Brownian motion and Merton jump-diffusion processes. The results from the MRAS algorithm are also compared with the Cross-Entropy (CE) method.

References

[1]
Aarts, E., and J. Korst. 1989. Simulated Annealing and Boltzmann Machines. John Wiley & Sons.
[2]
Broadie, M., and P. Glasserman. 1997. Pricing American-style securities using simulation. Journal of Economic Dynamics and Control 21: 1323--1352.
[3]
Broadie, M., and P. Glasserman. 2004. A stochastic mesh method for pricing high-dimensional American options. Journal of Computational Finance 7: 35--72.
[4]
Carriere, J. F. 1996. Valuation of the early-exercise price for derivative securities using simulations and splines. Insurance: Mathematics and Economics 19: 19--30.
[5]
Dueck, G., and T. Scheur. 1990. Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics 90: 161--175.
[6]
Fu, M. C., and J. Q. Hu. 1995. Sensitivity analysis for Monte Carlo simulation of option pricing. Prob. in the Engineering and Information Sciences 9: 417--446.
[7]
Fu, M. C., R. Wu, G. Gurkan, and A. Y. Demir. 2000. A note on perturbation analysis estimators for American-style options. Probability in the Engineering and Informational Sciences 14(3): 385--392.
[8]
Fu, M. C., S. B. Laprise, D. B. Madan, Y. Su, and R. Wu. 2001. Pricing American options: a comparison of Monte Carlo simulation approaches. Journal of Computational Finance 4: 39--88.
[9]
Fu, M. C., Hu, J., and S. I. Marcus. 2006. Model-based randomized methods for global optimization. Proc. of the 17th International Symposium on Mathematical Theory of Networks and Systems, CD-ROM.
[10]
Glover, F. W. 1990. Tabu search: a tutorial. Interfaces 20: 74--94.
[11]
Grant, D., G. Vora, and D. Weeks. 1996. Simulation and the early-exercise option problem. Journal of Financial Engineering 5: 211--227.
[12]
Grant, D., G. Vora, and D. Weeks. 1997. Path-dependent options: extending the Monte Carlo simulation approach. Management Science 43: 1589--1602.
[13]
Hu, J., M. C. Fu, and S. I. Marcus. 2006. A model reference adaptive search algorithm for global optimization. Operations Research (to appear).
[14]
Hu, J., M. C. Fu, and S. I. Marcus. 2005. Simulation optimization using model reference adaptive search. Proceedings of the 2005 Winter Simulation Conference, 811--818. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[15]
Kroese, D., R. Y. Rubinstein, and S. Porotsky. 2004. The cross-entropy method for continuous multi-extremal optimization. Submitted to Operations Research.
[16]
Laprise, S. B., M. C. Fu, S. I. Marcus, A. E. B. Lim, and H. Zhang. 2006. Pricing American-style derivatives with European call options. Management Science 52: 95--110.
[17]
Larranaga, P., R. Etxeberria, J. A. Lozano, B. Sierra, I. Inza, and J. Pena. 1999. A review of the cooperation between evolutionary computation and probabilistic graphical models. Proceedings of the Second Symposium on Artificial Intelligence. Adaptive Systems. CIMAF 99. Special Session on Distributions and Evolutionary Computation, 314--324.
[18]
L'Ecuyer, P., R. Simard, E. Chen, and W. D. Kelton. 2002. An objected-oriented random-number package with many long streams and substreams. Operations Research 50: 1073--1075.
[19]
Longstaff, F., and E. Schwartz. 2001. Valuing American options by simulation: a simple least-squares approach. The Review of Financial Studies 14: 113--148.
[20]
Merton, R. C. 1976. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3: 125--144.
[21]
Mühlenbein, H., and G. Paaß. 1996. From recombination of genes to the estimation of distributions: I. binary parameters. In Lecture Notes in Computer Science 1411: Parallel Problem Solving from Nature -- PPSN IV: 178--187.
[22]
Paul, T., and H. Iba. 2002. Linear and combinatorial optimizations by estimation of distribution algorithms. 9th MPS Symposium on Evolutionary Computation, IPSJ, Japan.
[23]
Rubinstein R. Y., and D. Kroese. 2004. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning. Springer-Verlag, New York.
[24]
Spall, J. 1992. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transaction on Automatic Control 37: 332--341.
[25]
Srinivas, M., and L. Patnaik. 1994. Genetic algorithms: a survey. IEEE Computer 27: 17--26.
[26]
Tilley, J. 1993. Valuating American options in a path simulation model. Transactions of the Society of Actuaries 45: 83--104.
  1. Applying model reference adaptive search to American-style option pricing

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    WSC '06: Proceedings of the 38th conference on Winter simulation
    December 2006
    2429 pages
    ISBN:1424405017

    Sponsors

    • IIE: Institute of Industrial Engineers
    • ASA: American Statistical Association
    • IEICE ESS: Institute of Electronics, Information and Communication Engineers, Engineering Sciences Society
    • IEEE-CS\DATC: The IEEE Computer Society
    • SIGSIM: ACM Special Interest Group on Simulation and Modeling
    • NIST: National Institute of Standards and Technology
    • (SCS): The Society for Modeling and Simulation International
    • INFORMS-CS: Institute for Operations Research and the Management Sciences-College on Simulation

    Publisher

    Winter Simulation Conference

    Publication History

    Published: 03 December 2006

    Check for updates

    Qualifiers

    • Article

    Conference

    WSC06
    Sponsor:
    • IIE
    • ASA
    • IEICE ESS
    • IEEE-CS\DATC
    • SIGSIM
    • NIST
    • (SCS)
    • INFORMS-CS
    WSC06: Winter Simulation Conference 2006
    December 3 - 6, 2006
    California, Monterey

    Acceptance Rates

    WSC '06 Paper Acceptance Rate 177 of 252 submissions, 70%;
    Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 212
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 07 Mar 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media