skip to main content
10.5555/1218112.1218405acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
Article

Nonuniform sampling for global optimization of kinetic rate constants in biological pathways

Published: 03 December 2006 Publication History

Abstract

Global optimization has proven to be a powerful tool for solving parameter estimation problems in biological applications, such as the estimation of kinetic rate constants in pathway models. These optimization algorithms sometimes suffer from slow convergence, stagnation or misconvergence to a non-optimal local minimum. Here we show that a nonuniform sampling method (implemented by running the optimization in a transformed space) can improve convergence and robustness for evolutionary-type algorithms, specifically Differential Evolution and Evolutionary Strategies. Results are shown from two case studies exemplifying the common problems of stagnation and misconvergence.

References

[1]
Hindmarsh, A. C. 1983. ODEPACK, a systematized collection of ODE solvers. Scientific Computing. e.a. R. S. Stepleman. Amsterdam, North-Holland. 1: 55--64.
[2]
Ingber, L. 1989. Very fast simulated re-annealing. Mathematical and Computer Modelling 12(8): 967--973.
[3]
Lampinen, J., and I. Zelinka. 2000. On stagnation of the differential evolution algorithm. MENDEL 2000, 6th International Mendel Conference on Soft Computing, Brno, Czech Republic, Brno University of Technology.
[4]
Lee, E., A. Salic, R. Kruger, R. Heinrich, and M. W. Kirschner. 2003. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biology 1(1): E10. Epub 2003 Oct 13.
[5]
Luersen, M. A., and R. L. Riche. 2002. Globalized Nelder-Mead method for engineering optimization. In Proceedings of the Third International Conference on Engineering Computational Technology. Stirling, Scotland, Civil-Comp press: 165--166.
[6]
Mendes, P., and D. Kell. 1998. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10): 869--83.
[7]
Moles, C. G., P. Mendes, and J. R. Banga. 2003. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Research 13(11): 2467--74.
[8]
Periwal, V., and Z. Szallasi. 2002. Trading "wet-work" for network. Nature Biotechnology 20(4): 345--6.
[9]
Runarsson, T. P., and X. Yao. 2000. Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation 4(3): 284--294.
[10]
Sarangapani, R., J. Teeguarden, M. E. Andersen, R. H. Reitz, and K. P. Plotzke. (2003). Route-specific differences in distribution characteristics of octamethylcyclotetrasiloxane in rats: analysis using PBPK models. Toxicological Sciences 71(1): 41--52.
[11]
Schoeberl, B., C. Eichler-Jonsson, E. D. Gilles, and G. Muller. 2002. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnology 20(4): 370--5.
[12]
Storn, R., and K. Price. 1996. Minimizing the real functions of the ICEC'96 contest by differential evolution. In Proceedings of IEEE International Conference on Evolutionary Computation, 842--844.
[13]
Tsai, K. Y., and F. S. Wang. 2005. Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics 21(7): 1180--8.
[14]
Voit, E. O. 2002. Metabolic modeling: a tool of drug discovery in the post-genomic era. Drug Discovery Today 7(11): 621--8.
[15]
Wolpert, D. H., and W. G. Macready. 1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1): 67--82.

Cited By

View all
  • (2012)Parameter Estimation Using Metaheuristics in Systems BiologyIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2011.639:1(185-202)Online publication date: 1-Jan-2012

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSC '06: Proceedings of the 38th conference on Winter simulation
December 2006
2429 pages
ISBN:1424405017

Sponsors

  • IIE: Institute of Industrial Engineers
  • ASA: American Statistical Association
  • IEICE ESS: Institute of Electronics, Information and Communication Engineers, Engineering Sciences Society
  • IEEE-CS\DATC: The IEEE Computer Society
  • SIGSIM: ACM Special Interest Group on Simulation and Modeling
  • NIST: National Institute of Standards and Technology
  • (SCS): The Society for Modeling and Simulation International
  • INFORMS-CS: Institute for Operations Research and the Management Sciences-College on Simulation

Publisher

Winter Simulation Conference

Publication History

Published: 03 December 2006

Check for updates

Qualifiers

  • Article

Conference

WSC06
Sponsor:
  • IIE
  • ASA
  • IEICE ESS
  • IEEE-CS\DATC
  • SIGSIM
  • NIST
  • (SCS)
  • INFORMS-CS
WSC06: Winter Simulation Conference 2006
December 3 - 6, 2006
California, Monterey

Acceptance Rates

WSC '06 Paper Acceptance Rate 177 of 252 submissions, 70%;
Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2012)Parameter Estimation Using Metaheuristics in Systems BiologyIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2011.639:1(185-202)Online publication date: 1-Jan-2012

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media