skip to main content
10.5555/1218112.1218406acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
Article

Prediction of in vitro hepatic biliary excretion using stochastic agent-based modeling and fuzzy clustering

Published: 03 December 2006 Publication History

Abstract

We present a method for estimating (predicting) parameter values for an agent-based model of in silico hepatocytes (ISH). The method enables the ISH to interact with simulated drugs to reasonably match results from in vitro hepatocyte excretion studies. Further, we make the estimation method available to the model, itself, to enable it to reasonably anticipate (predict) the biliary transport and excretion properties of a new compound based on the acceptable parameter values for previously encountered compounds. We use Fuzzy c-Means (FCM) classification algorithm to determine the degree of similarity between previously tuned compounds and the new compound. Specifically, a set of simulation parameters for enkephalin was predicted using the tuned parameter values of salicylate, taurocholate, and methotrexate. The feature space for the FCM classification is the physicochemical properties of the compounds.

References

[1]
Augen, J. 2002. The evolving role of information technology in the drug discovery process. Drug Discovery Today 7(5): 315--23.
[2]
Bezdek, J. C., R. Ehrlich, and W. Full. 1984. FCM: The fuzzy c-means clustering algorithm. Computers and Geoscience 10: 191--203.
[3]
Chelouah, R., and P. Siarry. 2003. Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions. European Journal of Operational Research 148: 335--348.
[4]
Derrig, R. A., and K. M. Ostaszewski. 1995. Fuzzy techniques of pattern recognition in risk and claim classification. Journal of Risk and Insurance 62: 447--482.
[5]
Hunt, C. A., G. E. P. Ropella, M. S. Roberts, and L. Yan. 2004. Biomimetic in silico devices. Computational Methods in Systems Biology. Lecture Notes in Bioinformatics 3082: 34--42. Available via <http://biosystems.ucsf.edu/Research/RecentPapers.html> {accessed April 8, 2006}.
[6]
Johns Hopkins Pathology. 2006. Gallbladder & bile duct cancer. Anatomy and physiology of the gallbladder and bile ducts. Available via <<http://pathology2.jhu.edu/gbbd/anatphys.cfm> {accessed April 8, 2006}.
[7]
Liu, X., E. L. LeCluyse, K. R. Brouwer, L-S. L. Gan, LeMasters, J. J. Stieger, B. P. J. Meier, and K. L. R. Brouwer. 1999a. Biliary excretion in primary rat hepatocytes cultured in a collagen-sandwich configuration. American Journal of Physiology 277: G12--G21.
[8]
Liu, X., J. P. Chism, E. L. LeCluyse, K. R. Brouwer, and K. L. R. Brouwer. 1999b. Correlation of biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats. Drug Metabolism and Disposition 27: 637--644.
[9]
Liu, Y., and C. A. Hunt 2005. Studies of intestinal drug transport using an in silico epithelio-mimetic device. Biosystems 82(2): 154--167.
[10]
Liu, Y., and Hunt, C. A. 2006. Mechanistic study of the interplay of intestinal transport and metabolism using the synthetic modeling method. Pharmaceutical Research 23(3): 493--505.
[11]
Luersen, M. A., and R. L. Riche. 2002. Globalized Nelder-Mead method for engineering optimization. In Proceedings of the Third International Conference on Engineering Computational Technology (Stirling, Scotland, Sept 4--6), 165--166. Civil-Comp Press, Edinburgh, Scotland.
[12]
Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright. 1998. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal on Optimization 9(1): 112--147.
[13]
Nelder, J. A., and R. Mead. 1965. A simplex method for function minimization. Computer Journal 7:308--313.
[14]
Neddermeijer, H. G., G. J. Oortmarssen, N. Piersma, and R. Dekker. 2000. Adaptive extensions of the Nelder and Mead simplex method for optimization of stochastic simulation models. Econometric Institute Report 199. Econometric Institute, Erasmus University, Rotterdam.
[15]
Rajasethupathy P., S. J. Vayttaden, and U. S. Bhalla. 2005. Systems modeling: a pathway to drug discovery. Current Opinion in Chemical Biology 9(4):400--6.
[16]
Ropella, G. E. P., and C. A. Hunt. 2003. Prerequisites for effective experimentation in computational biology. In Proceedings of the 25th Annual International Conference of the Engineering in Medicine and Biology Society (Cancun, Sept 17--21), 1272--5.
[17]
Ropella, G. E., C. A. Hunt, and D. A. Nag. 2005a. Using heuristic models to bridge the gap between analytic and experimental models in biology. In Proceedings of the 2005 Agent-Directed Simulation Symposium (San Diego, CA, Apr 2--8), Simulation Series vol. 37, no. 2, ed. L. Yilmaz, SCS Press, San Diego, CA, 182--190.
[18]
Ropella, G. E., C. A. Hunt, and S. Sheikh-Bahaei. 2005b. Methodological considerations of heuristic modeling of biological systems. The 9th World Multi-Conference on Systemics, Cybernetics and Informatics (Orlando, FL, July 10--13).
[19]
Ropella, G. E. P., D. A. Nag and C. A. Hunt. 2003. Similarity measures for automated comparison of in silico and in vitro experimental results. In Proceedings of the 25th Annual International Conference of the Engineering in Medicine and Biology Society (Cancun, Sept 17--21), 2933--2936.
[20]
Sheikh-Bahaei, S., G. E. P. Ropella, and C. A. Hunt. 2005. Agent-based simulation of in vitro hepatic drug metabolism: in silico hepatic intrinsic clearance. In Proceedings of the 2005 Agent-Directed Simulation Symposium (San Diego, CA, Apr 2--8), Simulation Series vol. 37(2), ed. L. Yilmaz, SCS Press, San Diego, CA, 171--6.
[21]
Sheikh-Bahaei, S., G. E. P. Ropella, and C. A. Hunt. 2006. In silico hepatocyte: agent-based modeling of the biliary excretion of drugs in vitro. In Proceedings of the 2006 Agent-Directed Simulation Symposium (Huntsville, AL, Apr 3--9), Simulation Series, ed. L. Yilmaz, et al., SCS Press, San Diego, CA (ISBN 1-56555-303-9), 157--163.
[22]
Takahashi, K., K. Kaizu, B. Hu, and M. Tomita. 2004. A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20(4):538--546.
[23]
Tan, S. Y. G. L., G. J. Oortmarssen, and N. Piersma. 2003. Estimating parameters of a microsimulation model for breast cancer screening using the score function method. Annals of Operations Research 119(1--4): 43--61.
[24]
Wong, C.-C., C.-C. Chen and S.-L. Yeh. 2000. K-means based fuzzy classifier design. IEEE International Conference of Fuzzy Systems 1:48--52.

Cited By

View all
  • (2012)Parameter Estimation Using Metaheuristics in Systems BiologyIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2011.639:1(185-202)Online publication date: 1-Jan-2012
  • (2009)Focus on discovering mechanismsProceedings of the 2009 Spring Simulation Multiconference10.5555/1639809.1639834(1-8)Online publication date: 22-Mar-2009
  • (2007)Real-time prediction in a stochastic domain via similarity-based data-miningProceedings of the 39th conference on Winter simulation: 40 years! The best is yet to come10.5555/1351542.1351794(1430-1435)Online publication date: 9-Dec-2007
  1. Prediction of in vitro hepatic biliary excretion using stochastic agent-based modeling and fuzzy clustering

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      WSC '06: Proceedings of the 38th conference on Winter simulation
      December 2006
      2429 pages
      ISBN:1424405017

      Sponsors

      • IIE: Institute of Industrial Engineers
      • ASA: American Statistical Association
      • IEICE ESS: Institute of Electronics, Information and Communication Engineers, Engineering Sciences Society
      • IEEE-CS\DATC: The IEEE Computer Society
      • SIGSIM: ACM Special Interest Group on Simulation and Modeling
      • NIST: National Institute of Standards and Technology
      • (SCS): The Society for Modeling and Simulation International
      • INFORMS-CS: Institute for Operations Research and the Management Sciences-College on Simulation

      Publisher

      Winter Simulation Conference

      Publication History

      Published: 03 December 2006

      Check for updates

      Qualifiers

      • Article

      Conference

      WSC06
      Sponsor:
      • IIE
      • ASA
      • IEICE ESS
      • IEEE-CS\DATC
      • SIGSIM
      • NIST
      • (SCS)
      • INFORMS-CS
      WSC06: Winter Simulation Conference 2006
      December 3 - 6, 2006
      California, Monterey

      Acceptance Rates

      WSC '06 Paper Acceptance Rate 177 of 252 submissions, 70%;
      Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 07 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2012)Parameter Estimation Using Metaheuristics in Systems BiologyIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2011.639:1(185-202)Online publication date: 1-Jan-2012
      • (2009)Focus on discovering mechanismsProceedings of the 2009 Spring Simulation Multiconference10.5555/1639809.1639834(1-8)Online publication date: 22-Mar-2009
      • (2007)Real-time prediction in a stochastic domain via similarity-based data-miningProceedings of the 39th conference on Winter simulation: 40 years! The best is yet to come10.5555/1351542.1351794(1430-1435)Online publication date: 9-Dec-2007

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media