skip to main content
10.5555/1218112.1218419acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
Article

Complexity reduction of biochemical networks

Published: 03 December 2006 Publication History

Abstract

This paper discusses two broad approaches for reducing the complexity of large cellular network models. The first approach involves exploiting conservation and time-scale separation and allows the dimension of the model to be significantly reduced. The second approach involves identifying subnetworks that carry out well defined functions and replacing these with simpler representations. Examples include identification of functional subnetworks such as oscillators or bistable switches and replacing these with a simplified mathematical construct. This enables complex networks to be rationalized as a series of hierarchical modules and greatly simplifies our ability to understand the dynamics of complex networks.

References

[1]
Bhattacharjee, B., D. A. Schwer, P. I. Barton, and W. H. Green. 2003. Optimally-reduced kinetic models: Reaction elimination in large-scale kinetic mechanisms. Combustion and Flame 135(3): 191--208.
[2]
Briggs, G. E. and J. B. S. Haldane. 1925. A note on the kinetics of enzyme action. Biochemical Journal 19(2):338--339.
[3]
Deuflhard, P. and J. Heroth. 1996. Dynamic dimension reduction in ODE models. In Scientific Computing in Chemical Engineering, ed. F. Keil, 24--43. Springer Verlag, Berlin.
[4]
Dvorák, I. and J. Siska. 1989. Analysis of metabolic systems with complex slow and fast dynamics. Bulletin of Mathematical Biology 51(2):255--274.
[5]
Edwards, K., T. F. Edgar, and V. I. Manousiouthakis. 1998. Kinetic model reduction using genetic algorithms, Computers and Chemical Engineering 22(1):239--246.
[6]
Eggels, R., J. Louis, J. Kok, and L. DeGoey. 1997. Comparison of conventional and low-dimensional manifold methods to reduce reaction mechanisms. Combustion, Science and Technology 123:347--362.
[7]
Fenichel, N. 1979. Geometrical singular perturbation theory for ordinary differential equations, Journal of Differential Equations 31:53--98.
[8]
Gardner, M. R. and W. R. Ashby. 1970. Connectance of large dynamic (Cybernetic) systems: Critical values for stability. Nature 228:784.
[9]
Golub, G. H. and Ch. F. van Loan. 1996. Matrix Computation. Johns Hopkins University Press.
[10]
Handrock-Meyer, S., L. V. Kalachev, and K. R. Schneider. 2001. A method to determine the dimension of long-time dynamics in multi-scale systems. Journal of Mathematical Chemistry 30(2): 133--160.
[11]
Hartwell, L. H., J. J. Hopfield, S. Leibler, and A. W. Murray. 1999. From molecular to modular biology. Nature 402:C47-C52.
[12]
Heinrich, R., S. M. Rapoport, and T. A. Rapoport. 1977. Metabolic regulation and mathematical models. Progress in Biophysics and Molecular Biology 32:1--82.
[13]
Heinrich, R. and S. Schuster. 1996. The Regulation of Cellular Systems. Chapman & Hall.
[14]
Kremling, A., S. Fischer, T. Sauter, K. Bettenbrock, and E. D. Gilles. 2004. Time hierarchies in the Escherichia coli carbohydrate uptake and metabolism. Biosystems 73(1):57--71.
[15]
Lam, S. H. and D. A. Goussis. 1988. Understanding complex chemical kinetics with computational singular perturbation. In Twenty-Second Symposium on Combustion, The University of Washington, Seattle, 931--941. The Combustion Institute, Pittsburgh.
[16]
Lam, S. H. and D. A. Goussis. 1994. The CSP method for simplifying kinetics. International Journal of Chemical Kinetics 26:461--486.
[17]
Lebiedz, D. 2004. Computing minimal entropy production trajectories: an approach to model reduction in chemical kinetics. Journal of Chemical Physics 120(15):6890--6897.
[18]
Lebiedz, D., V. Reinhardt, and J. Kammerer. 2005. Novel trajectory based concepts for model and complexity reduction in (bio)chemical kinetics. In Workshop on Model Reduction and Coarse-graining Approaches for Multi-scale Phenomena, Leicester, UK, in press.
[19]
Liao, J. C., and E. N. Lightfoot. 1988. Lumping analysis of biochemical reaction systems with time scale separation. Biotechnology and Bioengineering31(8):869--879.
[20]
Liao, J. C., and J. Delgado. 1993. Advances in metabolic control analysis. Biotechnology Progress 9:221--233.
[21]
Mangan, S. and U. Alon. 2003. Structure and function of the feed-forward loop network motif. In Proceedings of the National Academy of Sciences (PNAS), 100(21): 11980--11985.
[22]
Mass, U. 1998. Efficient calculation of intrinsic low-dimensional manifolds for the simplification of chemical kinetics. Computing and Visualization in Science 1:69--91.
[23]
Mass, U. and S. B. Pope. 1992. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combustion and Flame 88:239--264.
[24]
Maurya, M. R., S. J. Bornheimer, V. Venkatasubramanian, and S. Subramanian. 2005. Reduced-order modeling of biochemical networks: application to the GTPase-cycle signalling module. IEE Proceedings - Systems Biology 152(4):229--242.
[25]
Nguyen, A. H. and S. J. Fraser. 1989. Geometrical picture of reaction in enzyme kinetics. Journal of Chemical Physics 91:186--193.
[26]
Okino, M. S. and M. L. Mavrovouniotis. 1998. Simplification of mathematical models of chemical reaction systems. Chemical Reviews 98(2):391--408.
[27]
Park, D. J. M. 1974. The hierarchical structure of metabolic networks and the construction of efficient metabolic simulators. Journal of Theoretical Biology 46:31--74.
[28]
Rabitz, H. and M. Kramer, and D. Dacol. 1983. Sensitivity analysis of chemical kinetics. Annual Review of Physical Chemistry 34:419--461.
[29]
Rao, C. V. and A. P. Arkin. 2003. Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. The Journal of Chemical Physics 118(11):4999--5010.
[30]
Reder, C. 1988. Metabolic control theory: a structural approach. Journal of Theoretical Biology 135(2): 175--201.
[31]
Reich, J. G. and E. E. Selkov. 1981. Energy metabolism of the cell. Academic Press, London.
[32]
Rojdestvenski, I., M. Cottam, Y. I. Park, G. and Oquist. 1999. Robustness and time-scale hierarchy in biological systems. Biosystems 50(1):71--82.
[33]
Roussel, M. R. and S. J. Fraser. 2001. Invariant main-fold methods for metabolic model reduction. Chaos 11(1): 196--206.
[34]
Sauro, H. M. and B. Ingalls. 2004. Conservation analysis in biochemical networks: computational issues for software writers. Biophysical Chemistry 109(1): 1--15.
[35]
Schauer, M. and R. Heinrich. 1983. Quasi-steady state approximation in the mathematical modeling of biochemical reaction networks. Mathematical Biosciences 65:155--170.
[36]
Segel, L. A. and M. Selmrod. 1989. The quasi-steady-state assumption: a case study in perturbation. SIAM Review 31(3):446--477.
[37]
Shaik, O. S., J. Kammerer, J. Gorecki, and D. Lebiedz. 2005. Derivation of a quantitative minimal model from a detailed elementary-step mechanism supported by mathematical coupling analysis. The Journal of Chemical Physics 123:234103.
[38]
Turányi, T. 1990. Analysis of Complex Kinetic Systems. Tools and Applications. Journal of Mathematical Chemistry, 5, 203--248.
[39]
Turányi, T., A. Tomlin, and M. Pilling. 1993. On the error of the quasi steady state approximation. Journal of Physical Chemistry 97:163--172.
[40]
Tyson, J. J., K. C. Chen, and B. Novak. 2003. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory signaling pathways in the cell. Current Opinion in Cell Biology 15:221--231.
[41]
Vallabhajosyula, R. R., V. Chickarmane, and H. M. Sauro. 2006. Conservation analysis of large biochemical networks. Bioinformatics 22(3):346--353.
[42]
Valorani, M., H. Najm, and D. Goussis. 2003. CSP analysis of a transient flame-vortex interaction: time scales and manifolds, Combustion and Flame 134:35--53.
[43]
Wolf, D. M. and A. P. Arkin. 2003. Motifs, modules and games in bacteria. Current Opinion in Microbiology 6:125--134.
[44]
Zagaris, A., H. G. Kaper, and T. J. Kaper. 2004a. Analysis of the computational singular perturbation reduction method for chemical kinetics. Journal of Nonlinear Science 14:59--91.
[45]
Zagaris, A., H. G. Kaper, and T. J. Kaper. 2004b. Fast and slow dynamics for the computational singular perturbation method. Multiscale Modeling and Simulation 2:613--638.
[46]
Zobeley, J., D. Lebiedz, J. Kammerer, A. Ishmurzin, and U. Kummer. 2005. A new time-dependent complexity reduction method for biochemical systems. In Transactions on Computational Systems Biology, ed. C. Priami et al. Springer Verlag, LNBI 3380:90--110.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSC '06: Proceedings of the 38th conference on Winter simulation
December 2006
2429 pages
ISBN:1424405017

Sponsors

  • IIE: Institute of Industrial Engineers
  • ASA: American Statistical Association
  • IEICE ESS: Institute of Electronics, Information and Communication Engineers, Engineering Sciences Society
  • IEEE-CS\DATC: The IEEE Computer Society
  • SIGSIM: ACM Special Interest Group on Simulation and Modeling
  • NIST: National Institute of Standards and Technology
  • (SCS): The Society for Modeling and Simulation International
  • INFORMS-CS: Institute for Operations Research and the Management Sciences-College on Simulation

Publisher

Winter Simulation Conference

Publication History

Published: 03 December 2006

Check for updates

Qualifiers

  • Article

Conference

WSC06
Sponsor:
  • IIE
  • ASA
  • IEICE ESS
  • IEEE-CS\DATC
  • SIGSIM
  • NIST
  • (SCS)
  • INFORMS-CS
WSC06: Winter Simulation Conference 2006
December 3 - 6, 2006
California, Monterey

Acceptance Rates

WSC '06 Paper Acceptance Rate 177 of 252 submissions, 70%;
Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 387
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media