skip to main content
10.5555/1218112.1218423acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
Article

Think simulation - think experiment: the virtual cell paradigm

Published: 03 December 2006 Publication History

Abstract

The Virtual Cell modeling and simulation framework is the product of interdisciplinary research in biology that applies the diverse strengths and experiences of individuals from engineering, the physical sciences, the biological sciences, and mathematics. A key feature is the separation of layers (core technologies and abstractions) representing biological models, physical mechanisms, geometry, mathematical models and numerical methods. This reduces software complexity, allowing independent development and verification, but most importantly it clarifies the impact of modeling decisions, assumptions, and approximations. The result is a physically consistent, mathematically rigorous, spatial modeling and simulation framework for cell biology. The Virtual Cell has a rich, interactive user interface which connects to remote services providing scalable access to a modeling database and a large dedicated cluster for shared computation and storage. In addition to new modeling capabilities, future developments will emphasize data and tool interoperability, extensibility, and experimentally oriented model analysis tools.

References

[1]
Carson, J. H., H. Cui, W. Krueger, B. Slepchenko, B. Brumwell, and E. Barbarese. 2001. RNA trafficking in oligodendrocytes. In Cell Polarity and Subcellular Localization. D. Richter, ed. Springer-Verlag, Berlin.
[2]
Choi, Y. S., D. Resasco, J. Schaff, and B. Slepchenko. 1999. Electro-diffusion of ions inside living cells. IMA Journal of Applied Mathematics 62:207--226.
[3]
Fink, C. C., B. Slepchenko, I. I. Moraru, J. Schaff, J. Watras, and L. M. Loew. 1999. Morphological control of inositol 1,4,5-trisphosphate signals. Journal of Cell Biology 147:929--935.
[4]
Fink, C. C., B. Slepchenko, I. I. Moraru, J. Watras, J. C. Schaff, and L. M. Loew. 2000. An image-based model of calcium waves in differentiated neuroblastoma cells. Biophysical Journal 79:163--183.
[5]
Fridlyand, L. E., N. Tamarina, and L. H. Philipson. 2003. Modeling Ca2+ flux in pancreatic B-cells: role of the plasma membrane and intracellular stores. American Journal of Physiology - Endocrinology and Metabolism 285:E138--154.
[6]
Gillespie, D. T. 1977. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81:2340--2361.
[7]
Gillespie, D. T. 2001. Approximate accelerated stochastic simulation of chemically reacting systems. Journal of Chemical Physics 115:1716--1733.
[8]
Schneider, I. C., and J. M. Haugh. 2005. Quantitative elucidation of a distinct spatial gradient-sensing mechanism in fibroblasts. Journal of Cell Biology 171:883--892.
[9]
Hernjak, N., B. M. Slepchenko, K. Fernald, C. C. Fink, D. Fortin, I. I. Moraru, J. Watras, and L. M. Loew. 2005. Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar Purkinje cells. Biophysical Journal 89:3790--3806.
[10]
Horowitz, L. F., W. Hirdes, B. C. Suh, D. W. Hilgemann, K. Mackie, and B. Hille. 2005. Phospholipase C in living cells: activation, inhibition, Ca2+ requirement, and regulation of M current. Journal of General Physiology 126:243--262.
[11]
Kalab, P., A. Pralle, E. Y. Isacoff, R. Heald, and K. Weis. 2006. Analysis of a RanGTP-regulated gradient in miotic somatic cells. Nature 440: 697--701.
[12]
Ma, L., C. Janetopoulos, L. Yang, P. N. Devreotes, and P. A. Iglesias. 2004. Two complementary, local excitation, global inhibition mechanisms acting in parallel can explain the chemoattractant-induced regulation of PI(3,4,5)P3 response in Dictyostelium cells. Biophysical Journal 87:3764--3774.
[13]
Moraru, I. I, and L. M. Loew. 2005. Intracellular signaling: spatial and temporal control. Physiology 20: 169--179.
[14]
Schaff, J., C. C. Fink, B. Slepchenko, J. H. Carson, and L. M. Loew. 1997. A general computational framework for modeling cellular structure and function. Biophysical Journal 73:1135--1146.
[15]
Schaff, J. C., B. M. Slepchenko, Y. Choi, J. M. Wagner, D. Resasco, and L. M. Loew. 2001. Analysis of nonlinear dynamics on arbitrary geometries with the virtual cell. Chaos 11:115--131.
[16]
Patankar, S. V. 1980. Numerical Heat Transfer and Fluid Flow. Washington, D.C.: Taylor and Francis.
[17]
Slepchenko, B. M., J. C. Schaff, I. G. Macara, and L. M. Loew. 2003. Quantitative cell biology with the virtual vell. Trends in Cell Biology 13:570--576.
[18]
Slepchenko, B. M., and M. Terasaki. 2003. Cyclin aggregation and robustness of bio-switching. Molecular Biology of the Cell 14: 4695--4706.
[19]
Smith, A. E., B. M. Slepchenko, J. C. Schaff, L. M. Loew, and I. G. Macara. 2002. Systems analysis of Ran transport. Science 295:488--91.
[20]
Suh, B. C., L. R. Horowitz, W. Hirdes, K. Mackie, and B. Hille. 2004. Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq. Journal of General Physiology 123:663--683.
[21]
Xu, C., J. Watras, and L. M. Loew. 2003. Kinetic analysis of receptor-activated phosphoinositide turnover. Journal of Cell Biology 161:779--791.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSC '06: Proceedings of the 38th conference on Winter simulation
December 2006
2429 pages
ISBN:1424405017

Sponsors

  • IIE: Institute of Industrial Engineers
  • ASA: American Statistical Association
  • IEICE ESS: Institute of Electronics, Information and Communication Engineers, Engineering Sciences Society
  • IEEE-CS\DATC: The IEEE Computer Society
  • SIGSIM: ACM Special Interest Group on Simulation and Modeling
  • NIST: National Institute of Standards and Technology
  • (SCS): The Society for Modeling and Simulation International
  • INFORMS-CS: Institute for Operations Research and the Management Sciences-College on Simulation

Publisher

Winter Simulation Conference

Publication History

Published: 03 December 2006

Check for updates

Qualifiers

  • Article

Conference

WSC06
Sponsor:
  • IIE
  • ASA
  • IEICE ESS
  • IEEE-CS\DATC
  • SIGSIM
  • NIST
  • (SCS)
  • INFORMS-CS
WSC06: Winter Simulation Conference 2006
December 3 - 6, 2006
California, Monterey

Acceptance Rates

WSC '06 Paper Acceptance Rate 177 of 252 submissions, 70%;
Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 232
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media