skip to main content
10.1145/1228784.1228814acmconferencesArticle/Chapter ViewAbstractPublication PagesglsvlsiConference Proceedingsconference-collections
Article

On-chip characterization of molecular electronic devices using CMOS: the design and simulation of a hybrid circuit based on experimental molecular electronic device results

Published: 11 March 2007 Publication History

Abstract

The focus of the field of molecular electronics in recent years has been mostly limited to the development of molecular electronic test devices and the characterization of electron transport through organic molecules. However, in order for molecular electronic technology to be realized, it is probable that these devices will have to first be integrated with traditional CMOS components and circuits. For this reason, we present the design of a molecular device/CMOS hybrid circuit that exemplifies how the two technologies can be integrated as well as how the CMOS circuitry can be used for the on-chip characterization of the molecular electronic devices. This work includes: the fabrication and characterization of a silicon-based CMOS-compatible molecular electronic device, the design of a hybrid circuit that can be used for on-chip characterization of the molecular devices, and simulations based upon the actual experimental device results that verify the effectiveness of the circuit. The components in this preliminary work have been limited to simple example devices and circuits to serve as a proof of concept, but the basic framework can be expanded in the future to include much more complex behaviors and systems.

References

[1]
L. A. Bumm, J. J. Arnold, M. T. Cygan, T. D. Dunbar, T. P. Burgin, L. Jones II, D. L. Allara, J. M. Tour, and P. S. Weiss. "Are single molecular wires conducting?" Science, 27:1705--1707, March 1996.
[2]
J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour. "Large on-off ratios and negative differential resistance in a molecular electronic device." Science, 286:1550--1552, November 1999.
[3]
X. D. Cui, X. Zarate, J. Tomfohr, O. F. Sankey, A. Primak, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay. "Making electrical contacts to molecular monolayers." Nanotechnology, 13(1):5--14, February 2002.
[4]
Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J. J. Stapleton, D. W. Price, A. M. Rawlett, D. L. Allara, J. M. Tour, and P. S. Weiss. "Conductance switching in single molecules through conformational changes." Science, 292(5525):2303--2307, June 2001.
[5]
F.-R. F. Fan, J. Yang, L. Cai, D. W. Price, S. M. Dirk, D. V. Kosynkin, Y. Yao, A. M. Rawlett, J. M. Tour, and A. J. Bard. Charge transport through self-assembled monolayers of compounds of interest in molecular electronics." J. Amer. Chem. Soc., 124(19):5550--5560, 2002.
[6]
N. Gergel, N. Majumdar, K. Keyvanfar, N. Swami, L. R. Harriott, J. C. Bean, G. Pattanaik, G. Zangari, Y. Yao, and J. M. Tour. "Study of room temperature molecular memory observed from a nanowell device." J. Vac. Sci. Technol. A, 23(4):880--885, July 2005.
[7]
N. Gergel-Hackett, M. J. Cabral, T. L. Pernell, L. R. Harriott, J. C. Bean, B. Chen, M. Lu, and J. M. Tour. 2006. submitted to J. Vac. Sci. Technol. B.
[8]
N. Gergel-Hackett, N. Majumdar, Z. Martin, N. Swami, G. Pattanaik, G. Zangari, Y. Zhu, L. Pu, Y. Yao, J. M. Tour, L. R. Harriott, and J. C. Bean. "Effects of molecular environments on the electrical switching with memory of nitro-containing opes." J. Vac. Sci. Technol. A, 24(4):1243--1248, July 2006.
[9]
C. A. Hacker, K. A. Anderson, L. J. Richter, and C. A. Richter. "Comparison of si-o-c interfacial bonding of alcohols and aldehydes on si (111) formed from dillute solutions with ultraviolet irradiation." Langmuir, 21(3):882--889, February 2005.
[10]
J. He, B. Chen, A. K. Flatt, J. J. Stephenson, C. D. Doyle, and J. M. Tour. "Metal-free silicon-molecule-nanotube testbed and memory device." Nature Mater., 5(1):63--68, January 2006.
[11]
I. Kratochvilova, M. Kocirik, A. Zambova, J. Mbindyo, T. E. Mallouk, and T. S. Mayer. "Room temperature negative differential resistance in molecular nanowires." J. Mater. Chem., 12(10):2927--2930, 2002.
[12]
J. G. Kushmerick, D. B. Holt, J. C. Yang, J. Naciri, M. H. Moore, and R. Shashidhar. "Metal-molecule contacts and charge transport across monomolecular layers: Measurement and theory." Phys. Rev. Lett., 89(8):086802, August 2002.
[13]
P. A. Lewis, C. E. Inman, Y. Yao, J. M. Tour, J. E. Hutchinson, and P. S. Weiss. "Mediating stochastic switching of single molecules using chemical functionality." J. Amer. Chem. Soc., 126(39):12214--12215, 2004.
[14]
C. Li, D. Zhang, X. Liu, S. Han, T. Tang, C. Zhou, W. Fan, J. Koehne, J. Han, M. Meyyappan, A. M. Rawlett, D. W. Price, and J. M. Tour. "Fabrication approach for molecular memory arrays." Appl. Phys. Lett., 82(4):645--647, January 2003.
[15]
S. Lodha and D. B. Janes. "Enhanced current densities in Au/molecule/GaAs devices." Appl. Phys. Lett., 85(14):2809--2811, October 2004.
[16]
Y. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielson, E. Delonno, G. Ho, J. Perkins, H. Tseng, T. Yamamoto, J. F. Stoddart, and J. R. Heath. "Two-dimensional molecular electronics circuits." ChemPhysChem, 3(6):519--525, June 2002.
[17]
N. Majumdar, N. Gergel, D. Routenberg, J. C. Bean, L. R. Harriott, B. Li, L. Pu, Y. Yao, and J. M. Tour. "Nanowell device for the electrical characterization of metal-molecule-metal junctions." J. Vac. Sci. Technol. B, 23(4):1417--1421, July 2005.
[18]
N. Majumdar, N. Gergel-Hackett, J. C. Bean, L. R. Harriott, G. Pattanaik, G. Zangari, Y. Yao, and J. M. Tour. "The electrical behavior of nitro oligo(phenylene ethylene)'s in pure and mixed monolayers." J. Electron. Mater., 35(1):140--146, January 2006.
[19]
H. McNally, D. B. Janes, B. Kasibhatla, and C. P. Kubiak. "Electrostatic investigation into the bonding of poly(phenylene) thiols to gold." Superlattices and Microstructures, 31(5):239--245, May 2002.
[20]
M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, and J. M. Tour. "Molecular random access memory cell." Appl. Phys. Lett., 78(23):3735--3737, June 2001.
[21]
M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour. "Conductance of a molecular junction." Science, 278:252--254, October 1997.
[22]
C. A. Richter, C. A. Hacker, and L. J. Richter. "Electrical and spectroscopic characterization of metal/monolayer/Si devices." J. Phys. Chem. B, 109(46):21836--21841, November 2005.
[23]
C. A. Richter, D. R. Stewart, D. A. A. Ohlberg, and R. S. Williams. "Electrical characterization of Al/AlOx/molecule/Ti/Al devices." Appl. Phys. A - Materials Science and Processing, 80(6):1355--1362, March 2005.
[24]
G. S. Rose, A. C. Cabe, N. Gergel-Hackett, N. Majumdar, M. R. Stan, J. C. Bean, L. R. Harriott, Y. Yao, and J. M. Tour. "Design approaches for hybrid cmos/molecular memory based on experimental date." In Proceedings Great Lakes Symposium on VLSI, pages 2--7, May 2006.
[25]
G. S. Rose, M. M. Ziegler, and M. R. Stan. "Large-signal two-terminal device model for nanoelectronic circuit analysis." IEEE Trans. VLSI Syst., 12(11):1201--1208, November 2004.
[26]
D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, and J. F. Stoddart. "Molecule-independent electrical switching in Pt/organic monolayer/Ti devices." Nano Lett., 4(1):133--136, November 2004.
[27]
W. Wang, T. Lee, M. Kamdar, M. A. Reed, M. P. Stewart, J. Hwang, and J. M. Tour. "Electrical characterization of metal-molecule-silicon junctions." Superlattices and Microstructures, 33(4):217--226, April 2003.
[28]
D. J. Wold and C. D. Frisbie. "Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy." J. Amer. Chem. Soc., 123(23):5549--5556, June 2001.
[29]
C. Zhou, M. R. Deshpande, M. A. Reed, L. Jones II, and J. M. Tour. "Nanoscale metal/self-assembled monolayer/metal heterostructures. Appl. Phys. Lett., 71(5):611, November 1997.
[30]
M. M. Ziegler and M. R. Stan. "CMOS/nano co-design for crossbar-based molecular electronic systems." IEEE Trans. Nanotechnol., 2(4):217--230, December 2003.

Cited By

View all
  • (2008)The Integration of Molecular Electronic Devices with Traditional CMOS Technologies2008 8th IEEE Conference on Nanotechnology10.1109/NANO.2008.156(522-525)Online publication date: Aug-2008
  • (2007)Nanocell Devices and Architecture for Configurable Computing With Molecular ElectronicsIEEE Transactions on Circuits and Systems I: Regular Papers10.1109/TCSI.2007.90784254:11(2461-2471)Online publication date: Nov-2007
  • (2007)Testing molecular devices in CMOS/nano integrated circuits2007 7th IEEE Conference on Nanotechnology (IEEE NANO)10.1109/NANO.2007.4601300(773-777)Online publication date: Aug-2007

Index Terms

  1. On-chip characterization of molecular electronic devices using CMOS: the design and simulation of a hybrid circuit based on experimental molecular electronic device results

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GLSVLSI '07: Proceedings of the 17th ACM Great Lakes symposium on VLSI
    March 2007
    626 pages
    ISBN:9781595936059
    DOI:10.1145/1228784
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 March 2007

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. hybrid circuits
    2. molecular electronics

    Qualifiers

    • Article

    Conference

    GLSVLSI07
    Sponsor:
    GLSVLSI07: Great Lakes Symposium on VLSI 2007
    March 11 - 13, 2007
    Stresa-Lago Maggiore, Italy

    Acceptance Rates

    Overall Acceptance Rate 312 of 1,156 submissions, 27%

    Upcoming Conference

    GLSVLSI '25
    Great Lakes Symposium on VLSI 2025
    June 30 - July 2, 2025
    New Orleans , LA , USA

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2008)The Integration of Molecular Electronic Devices with Traditional CMOS Technologies2008 8th IEEE Conference on Nanotechnology10.1109/NANO.2008.156(522-525)Online publication date: Aug-2008
    • (2007)Nanocell Devices and Architecture for Configurable Computing With Molecular ElectronicsIEEE Transactions on Circuits and Systems I: Regular Papers10.1109/TCSI.2007.90784254:11(2461-2471)Online publication date: Nov-2007
    • (2007)Testing molecular devices in CMOS/nano integrated circuits2007 7th IEEE Conference on Nanotechnology (IEEE NANO)10.1109/NANO.2007.4601300(773-777)Online publication date: Aug-2007

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media