skip to main content
article

Simulation of random cell displacements in QCA

Published: 01 April 2007 Publication History

Abstract

We analyze the behavior of quantum-dot cellular automata (QCA) building blocks in the presence of random cell displacements. The QCA cells are modeled using the coherence vector description and simulated using QCADesigner. We evaluate various fundamental circuits: the wire, the inverter, the majority gate, and the two-wire crossing approaches: the coplanar crossover and the multilayer crossover. Our results show that different building blocks have different displacement tolerances. The coplanar crossover and inverter perform the weakest. The wire is the most robust. We have found displacement tolerances to be a function of circuit layout and geometry rather than cell size.

References

[1]
Blair, E. P. 2003. Tools for the design and simulation of clocked molecular quantum-dot cellular automata circuits. Tech. rep., University of Notre Dame, Notre Dame, IN.
[2]
Gin, A., Tougaw, P. D., and Williams, S. 1999. An alternative geometry for quantum-dot cellular automata. J. Appl. Phys. 85, 12 (June), 8281--8286.
[3]
Gupta, P., Jha, N. K., and Lingappan, L. 2006. Test generation for combinational quantum cellular automata (qca) circuits. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE '06). Leuven, Belgium. European Design and Automation Association, 311--316.
[4]
Huang, J., Momenzadeh, M., Tahoori, M. B., and Lombardi, F. 2004. Defect characterization for scaling of QCA devices. In Proceedings of the 19th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.
[5]
Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G. H., and Porod, W. 2006. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 5758, 205--208.
[6]
Jiao, J., Long, G. J., Grandjean, F., Beatty, A. M., and Fehlner, T. P. 2003. Building blocks for the molecular expression of quantum cellular automata. isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. J. Am. Chem. Soc. 125, 25, 7522--7523.
[7]
Lent, C. S. 1993. Quantum cellular automata. Nanotechnology 4, 49--57.
[8]
Lent, C. S. and Isaksen, B. 2003. Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50, 9, 1890--1896.
[9]
Lent, C. S., Isaksen, B., and Lieberman, M. 2003. Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056--1063.
[10]
Lent, C. S. and Tougaw, P. D. 1997. A device architecture for computing with quantum dots. Proceedings of IEEE 85, 4 (April), 541--557.
[11]
Lu, Y. and Lent, C. S. 2005. Theoretical study of molecular quantum-dot cellular automata. J. Comput. Elec. 4, 115--118.
[12]
Macucci, M., Gattobigio, M., Bonci, L., Iannaccone, G., Prins, F. E., Single, C., Wetekam, G., and Kern, D. P. 2004. A QCA cell in silicon-on-insulator technology: theory and experiment. Superlatt. Microstruct. 34, 3 (Sept.), 205--211.
[13]
Mahler, G. and Weberrüs, V. A. 1998. Quantum Networks: Dynamics of Open Nanostructures. Springer-Verlag, Berlin, Germany.
[14]
Orlov, A. O., Kummamuru, R. K., Ramasubramaniam, R., Lent, C. S., Berstein, G. H., and Snider, G. L. 2003. Clocked quantum-dot cellular automata shift register. Surf. Sci. 532--535, 1193--1198.
[15]
Tahoori, M. B., Huang, J., Momenzadeh, M., and Lombardi, F. 2004. Testing of quantum cellular automata. IEEE Trans. Nano. 3, 4 (Dec.), 432--442.
[16]
Tahoori, M. B., Momenzadeh, M., Huang, J., and Lombardi, F. 2004. Defects and faults in quantum cellular automata at nano scale. In Proceedings of the 22nd IEEE VLSI Test Symposium. Washington, DC. IEEE Computer Society, 291.
[17]
Timler, J. and Lent, C. S. 2002. Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 2 (Jan.), 823--831.
[18]
Timler, J. and Lent, C. S. 2003. Maxwell's demon and quantum-dot cellular automata. J. Appl. Phys. 94, 2 (July), 1050--1060.
[19]
Tóth, G. 2000. Correlation and coherence in quantum-dot cellular automata. Ph.D. thesis, University of Notre Dame, Notre Dame, IN 46556.
[20]
Tougaw, P. D. and Lent, C. S. 1996. Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80, 8 (Oct.), 4722--4735.
[21]
Walus, K. and Jullien, G. A. 2006. Design tools for an emerging soc technology: quantum-dot cellular automata. Proceedings of IEEE 94, 6 (June), 1225--1244.
[22]
Walus, K., Mazur, M., Schulhof, G., and Jullien, G. A. 2005. Simple 4-bit processor based on quantum-dot cellular automata (QCA). In Proceedings of Application Specific Architectures, and Processors Conference. 288--293.
[23]
Walus, K. and Schulhof, G. 2001. QCADesigner Homepage. http://www.qcadesigner.ca/.
[24]
Walus, K., Schulhof, G., and Jullien, G. A. 2004. High level exploration of quantum-dot cellular automata (QCA). In Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers.
[25]
Walus, K., Schulhof, G., Zhang, R., Wang, W., and Jullien, G. A. 2004. Circuit design based on majority gates for applications with quantum-dot cellular automata. In Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers.
[26]
Wang, W., Walus, K., and Jullien, G. A. 2003. Quantum-dot cellular automata adders. In Proceedings of IEEE Conference on Nanotechnology.

Cited By

View all
  • (2024)A Nanomagnetic Logic based processor2024 37th SBC/SBMicro/IEEE Symposium on Integrated Circuits and Systems Design (SBCCI)10.1109/SBCCI62366.2024.10703975(1-5)Online publication date: 2-Sep-2024
  • (2024)Efficient Adders for Nano Computing: An Approach Using QCAPhysica Scripta10.1088/1402-4896/ad9865Online publication date: 28-Nov-2024
  • (2024)Predicting Energy Dissipation in QCA-Based Layered-T Gates Under Cell Defects and Polarisation: A Study with Machine-Learning ModelsJournal of Electronic Testing: Theory and Applications10.1007/s10836-024-06133-740:4(435-455)Online publication date: 21-Aug-2024
  • Show More Cited By

Index Terms

  1. Simulation of random cell displacements in QCA

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Journal on Emerging Technologies in Computing Systems
      ACM Journal on Emerging Technologies in Computing Systems  Volume 3, Issue 1
      April 2007
      55 pages
      ISSN:1550-4832
      EISSN:1550-4840
      DOI:10.1145/1229175
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Journal Family

      Publication History

      Published: 01 April 2007
      Published in JETC Volume 3, Issue 1

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. QCA
      2. Quantum-dot cellular automata
      3. fabrication variances
      4. fault tolerance

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)15
      • Downloads (Last 6 weeks)11
      Reflects downloads up to 07 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)A Nanomagnetic Logic based processor2024 37th SBC/SBMicro/IEEE Symposium on Integrated Circuits and Systems Design (SBCCI)10.1109/SBCCI62366.2024.10703975(1-5)Online publication date: 2-Sep-2024
      • (2024)Efficient Adders for Nano Computing: An Approach Using QCAPhysica Scripta10.1088/1402-4896/ad9865Online publication date: 28-Nov-2024
      • (2024)Predicting Energy Dissipation in QCA-Based Layered-T Gates Under Cell Defects and Polarisation: A Study with Machine-Learning ModelsJournal of Electronic Testing: Theory and Applications10.1007/s10836-024-06133-740:4(435-455)Online publication date: 21-Aug-2024
      • (2023)Fault modeling for external energy or internal cell defect in quantum dot cellular automataMicroprocessors and Microsystems10.1016/j.micpro.2023.104948103(104948)Online publication date: Nov-2023
      • (2022)Energy Analysis of Metal QCA Circuits Behavior Based on Particle-Wave DualityIETE Journal of Research10.1080/03772063.2022.2048701(1-11)Online publication date: 22-Mar-2022
      • (2021)Design and Analysis of Fault-Tolerant 1:2 Demultiplexer Using Quantum-Dot Cellular Automata Nano-TechnologyElectronics10.3390/electronics1021256510:21(2565)Online publication date: 20-Oct-2021
      • (2021)Cryptographic models of nanocommunicaton network using quantum dot cellular automata: A surveyIET Quantum Communication10.1049/qtc2.120132:3(98-121)Online publication date: Jul-2021
      • (2021)PreliminariesDesign Automation for Field-coupled Nanotechnologies10.1007/978-3-030-89952-3_2(7-35)Online publication date: 21-Oct-2021
      • (2020)Quantum-dot Cellular Automata Latches for Reversible Logic Using Wave Clocking SchemeIETE Journal of Research10.1080/03772063.2020.181988669:1(309-324)Online publication date: 8-Oct-2020
      • (2019)A Unique Cell-based Configuration of XOR Gates in Quantum-dot Cellular Automata Nanotechnology2019 IEEE International Conference on Sensors and Nanotechnology10.1109/SENSORSNANO44414.2019.8940099(1-4)Online publication date: Jul-2019
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media