skip to main content
10.1145/1233501.1233688acmconferencesArticle/Chapter ViewAbstractPublication PagesiccadConference Proceedingsconference-collections
Article

From molecular interactions to gates: a systematic approach

Published: 05 November 2006 Publication History

Abstract

The continuous minituarization of integrated circuits may reach atomic scales in a couple of decades. Some researchers have already built simple computation engines by manipulating individual atoms on metal surfaces. This paper presents a systematic approach to automate the design of logic gates using molecule cascades. Temporal logic is used to characterize molecular interactions and specify the behavior of logic gates. Model-checking techniques are used for the exploration of structures behaviorally equivalent to the logic gates. As an example, a complete library of combinational logic gates has been designed using a particular molecular system. This new approach provides a methodology to bridge the gap between physical chemists and computer scientists in seeking computational structures at atomic scales.

References

[1]
P. Avouris, J. Appenzeller, R. Martel, and S. Wind. Carbon nanotube electronics. Proc. of the IEEE, 91(11):1772--1784, 2003.
[2]
C. Bennett. The thermodynamics of computation---a review. International Journal of Theoretical Physics, 21(12):905--940, 1982.
[3]
G. Bourianoff. The future of nanocomputing. Computer, 36(8):44--53, August 2003.
[4]
R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys, 24(3):293--318, 1992.
[5]
J. Burch, E. Clarke, D. Long, K. McMillan, and D. Dill. Symbolic model checking for sequential circuit verification. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 13(4):401--424, 1994.
[6]
E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
[7]
E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst., 8(2):244--263, 1986.
[8]
L. Durbeck and N. Macias. The cell matrix: an architecture for nanocomputing. Nanotechnology, 12(3):217--230, September 2001.
[9]
D. M. Eigler, C. P. Lutz, M. F. Crommie, H. C. Mahoran, A. J. Heinrich, and J. A. Gupta. Information transport and computation in nanometre-scale structures. Phil. Trans. R. Soc. Lond. A, 362(1819):1135--1147, 2004.
[10]
M. Frank. Introduction to reversible computing: motivation, progress, and challenges. In CF '05: Proceedings of the 2nd conference on Computing frontiers, pages 385--390, New York, NY, USA, 2005. ACM Press.
[11]
A. J. Heinrich, C. P. Lutz, J. A. Gupta, and D. M. Eigler. Molecule cascades. Science, 298:1381--1387, 2002.
[12]
IBM scientists build world's smallest operating computing circuits. http://domino.watson.ibm.com/comm/pr.nsf/pages/news.20021024_cascade.html, Oct. 2002.
[13]
International Technology Roadmap for Semiconductors, 2005.
[14]
C. Joachim, J. Gimzewski, and A. Aviram. Electronics using hybrid-molecular and mono-molecular devices. Nature, 408:541--548, 30 November 2000.
[15]
J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic Model Checking: 1020 States and Beyond. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, pages 1--33, Washington, D.C., 1990. IEEE Computer Society Press.
[16]
H. Kato, H. Okuyama, S. Ichihara, and M. Kawai. Lateral interactions of CO in the (2 x 1)p2mg structure on Pd(110): Force constants between tilted CO molecules. Journal of Chemical Physics, 112(4):1925--1936, 22 January 2000.
[17]
C. Lent, B. Isaksen, and M. Lieberman. Molecular quantum-dot cellular automata. J. Am. Chem. Soc., 125(4):1056--1063, 2003.
[18]
K. K. Likharev and D. B. Strukov. Cmol: Devices, circuits, and architectures. In G. C. et al. (eds.), editor, Introduction to Molecular Electronics, pages 447--477. Springer, Berlin, 2005.
[19]
B. Lin and F. Somenzi. Minimization of symbolic relations. In ICCAD, pages 88--91, Nov. 1990.
[20]
D. E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proceedings of an International Symposium on the Theory of Switching, pages 204--243. Harvard University Press, 1959.
[21]
Y. Ono, A. Fujiwara, K. Nishiguchi, H. Inokawa, and Y. Takahashi. Manipulation and detection of single electrons for future information processing. Journal of Applied Physics, 97:031101-1-031101-19, 2005.
[22]
F. Peper, J. Lee, S. Adachi, and S. Mashiko. Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers? Nanotechnology, 14(4):469--485, April 2003.
[23]
S. D. Sarma, J. Fabian, X. Hu, and I. Zutic. Issues, concepts, and challenges in spintronics. In Proc. 58th IEEE Device Research Conf. (DRC), pages 95--98. IEEE, June 2000.
[24]
M. Stone. The representation theorem for Boolean algebras. Trans. Amer. Math. Soc., 40:37--111, 1936.
[25]
P. Uvdal, P.-A. Karlsson, C. Nyberg, and S. Andersson. On the structure of dense CO overlayers. Surface Science, 202(1--2):167--182, 1 August 1988.
[26]
T. Verhoefi. Delay-insensitive codes---an overview. Distributed Computing, 3(1):1--8, 1988.

Cited By

View all

Index Terms

  1. From molecular interactions to gates: a systematic approach

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ICCAD '06: Proceedings of the 2006 IEEE/ACM international conference on Computer-aided design
    November 2006
    147 pages
    ISBN:1595933891
    DOI:10.1145/1233501
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 November 2006

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. formal methods
    2. nanocascades
    3. nanocomputing

    Qualifiers

    • Article

    Conference

    ICCAD06
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 457 of 1,762 submissions, 26%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 07 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media