skip to main content
10.1145/1236246.1236263acmotherconferencesArticle/Chapter ViewAbstractPublication PagesspmConference Proceedingsconference-collections
Article

Harmonic volumetric mapping for solid modeling applications

Published:04 June 2007Publication History

ABSTRACT

Harmonic volumetric mapping for two solid objects establishes a one-to-one smooth correspondence between them. It finds its applications in shape registration and analysis, shape retrieval, information reuse, and material/texture transplant. In sharp contrast to harmonic surface mapping techniques, little research has been conducted for designing volumetric mapping algorithms due to its technical challenges. In this paper, we develop an automatic and effective algorithm for computing harmonic volumetric mapping between two models of the same topology. Given a boundary mapping between two models, the volumetric (interior) mapping is derived by solving a linear system constructed from a boundary method called the fundamental solution method. The mapping is represented as a set of points with different weights in the vicinity of the solid boundary. In a nutshell, our algorithm is a true meshless method (with no need of specific connectivity) and the behavior of the interior region is directly determined by the boundary. These two properties help improve the computational efficiency and robustness. Therefore, our algorithm can be applied to massive volume data sets with various geometric primitives and topological types. We demonstrate the utility and efficacy of our algorithm in shape registration, information reuse, deformation sequence analysis, tetrahedral remeshing and solid texture synthesis.

References

  1. Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 3, 617--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Banerjee, P. 1994. The Boundary Element Methods in Engineering. McGraw-Hill, New York.Google ScholarGoogle Scholar
  3. Belytschko, T., Lu, Y. Y., and Gu, L. 1994. Element free galerkin methods. International Journal for Numerical Methods in Engineering 37, 229--256.Google ScholarGoogle ScholarCross RefCross Ref
  4. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P. 1996. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering 139, 3--47.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bloomenthal, J. 1994. An implicit surface polygonizer. Graphics Gems IV, 324--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bogomolny, A. 1985. Fundamental solutions method for elliptic boundary value problems. SIAM Journal on Numerical Analysis 22, 644--669.Google ScholarGoogle ScholarCross RefCross Ref
  7. Bridson, R., Teran, J., Molino, N., and Fedkiw, R. 2005. Adaptive physics based tetrahedral mesh generation using level sets. Engineering with Computers 21, 2--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cheng, H., Greengard, L., and Rokhlin, V. 1999. A fast adaptive multipole algorithm in three dimensions. Journal of Computational Physics 155, 468--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Desbrun, M., and Cani, M. P. 1995. Animating soft substances with implicit surfaces. In Proc. SIGGRAPH '95, 287--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Desbrun, M., and Cani, M. P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Proc. EG Workshop on Animation and Simulation, 61--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21, 3, 209--218.Google ScholarGoogle ScholarCross RefCross Ref
  12. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. In SIGGRAPH, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fairweather, G., and Karageorghis, A. 1998. The method of fundamental solution for elliptic boundary value problems. Advances in Computational Mathematics 9, 1--2 (September), 69--95.Google ScholarGoogle ScholarCross RefCross Ref
  14. Floater, M. S., and Hormann, K. 2005. Surface parameterization: a tutorial and survey. In Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization. Springer, Berlin, Heidelberg, 157--186.Google ScholarGoogle Scholar
  15. Floater, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1, 19--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Frisken, S., and Perry, R. 2003. Simple and efficient traversal methods for quadtrees and octrees.Google ScholarGoogle Scholar
  17. Garabedian, P. 1998. Partial Differential Equations. American Mathematical Society.Google ScholarGoogle Scholar
  18. Golberg, M. A., and Chen, C. S. 1999. The method of fundamental solutions for potential, helmholtz and diffusion problems. Boundary integral methods: Numerical and mathematical aspects (A99-30801 07-64) 1, 103--176.Google ScholarGoogle Scholar
  19. Gu, X., Wang, Y., Chan, T., Thompson, P., and Yau, S. T. 2004. Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23, 8, 949--958.Google ScholarGoogle ScholarCross RefCross Ref
  20. Guo, X., Li, X., Bao, Y., Gu, X., and Qin, H. 2006. Meshless thin-shell simulation based on global conformal parameterization. IEEE Transactions on Visualization and Computer Graphics 12, 3, 375--385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jagnow, R., Dorsey, J., and Rushmeier, H. 2004. Stereological techniques for solid textures. ACM Trans. Graph. 23, 3, 329--335. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. James, D. L., and Pai, D. K. 1999. Artdefo: accurate real time deformable objects. In Proc. SIGGRAPH '99, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ju, T., Schaefer, S., and Warren, J. D. 2005. Mean value coordinates for closed triangular meshes. SIGGRAPH 24, 3, 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kanai, T., Suzuki, H., and Kimura, F. 1998. Three-dimensional geometric metamorphosis based on harmonic maps. The Visual Comput. 14, 4, 166--176.Google ScholarGoogle ScholarCross RefCross Ref
  25. Kitagawa, T. 1988. On the numerical stability of the method of fundamental solutions applied to the dirichlet problem. Japan Journal of Applied Mathematics 35, 507--518.Google ScholarGoogle Scholar
  26. Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3d models. ACM Trans. Graph. 23, 3, 861--869. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Larsen, E., Gottschalk, S., Lin, M. C., and Manocha, D. 2000. Fast distance queries with rectangular swept sphere volumes. In Proc. IEEE International Conference on Robotics and Automation, 3719--3726.Google ScholarGoogle Scholar
  28. Lee, A., Dobkin, D., Sweldens, W., and Schröder, P. 1999. Multiresolution mesh morphing. In Proc. SIGGRAPH, 343--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Li, X., Bao, Y., Guo, X., Gu, X., and Qin, H. 2007. Extremal quasiconformal surface mapping. Manuscript submitted for publication.Google ScholarGoogle Scholar
  30. Liu, Y., Nishimura, N., and Yao, Z. 2005. A fast multipole accelerated method of fundamental solutions for potential problems. Engineering Analysis with Boundary Elements 29, 1016--1024.Google ScholarGoogle ScholarCross RefCross Ref
  31. Michikawa, T., Kanai, T., Fujita, M., and Chiyokura, H. 2001. Multiresolution interpolation meshes. In Proc. Pacific Graphics, 60--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Monaghan, J. 1988. An introduction to sph. Computer Physics Communications 48, 89--96.Google ScholarGoogle ScholarCross RefCross Ref
  33. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proc. ACM SIGGRAPH/EG Symp. Computer Animation, 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. 24, 3, 471--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Pauly, M., Keiser, R., Adams, B., Dutre, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3, 957--964. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Peachey, D. R. 1985. Solid texturing of complex surfaces. In SIGGRAPH, ACM Press, New York, NY, USA, 279--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Perlin, K. 1985. An image synthesizer. In SIGGRAPH, ACM Press, New York, NY, USA, 287--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugate. In Experimental Mathematics, vol. 2, 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  39. Porumbescu, S. D., Budge, B., Feng, L., and Joy, K. I. 2005. Shell maps. ACM Trans. Graph. 24, 3, 626--633. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Praun, E., Sweldens, W., and Schröder, P. 2001. Consistent mesh parameterizations. In Proc. SIGGRAPH, 179--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ramachandran, P. A. 2002. Method of fundamental solutions: singular value decomposition analysis. Comunications in Numerical Methods in Engineering 18, 11, 789--801.Google ScholarGoogle ScholarCross RefCross Ref
  42. Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. SIGGRAPH. 23, 3, 870--877. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Si, H. 2006. http://tetgen.berlios.de/version1.41.Google ScholarGoogle Scholar
  44. Sumner, R. W., and Popovic, J. Mesh data from deformation transfer for triangle meshes. http://people.csail.mit.edu/sumner/research/deftransfer/data.html.Google ScholarGoogle Scholar
  45. Sumner, R. W., and Popovic, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 3, 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Tanklevich, R., Fairweather, G., Karageorghis, A., and Smyrlis, Y. S. Potential field based geometric modeling using the method of fundamental solutions. Technical Report.Google ScholarGoogle Scholar
  47. Voruganti, H. K., Dasgupta, B., and Hommel, G. 2006. A novel potential field based domain mapping method. In Proceedings of 10th WSEAS Conference on Computers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wang, Y., Gu, X., Chan, T. F., Thompson, P. M., and Yau, S. T. 2004. Volumetric harmonic brain mapping. In ISBI '04: IEEE International Symposium on Biomedical Imaging: Macro to Nano., 1275--1278.Google ScholarGoogle Scholar
  49. Wang, Y., Gu, X., and Yau, S. T. 2004. Volumetric harmonic map. Communications in Information and Systems 3, 3, 191--202.Google ScholarGoogle Scholar
  50. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph. 23, 3, 644--651. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zayer, R., Rössl, C., Karni, Z., and Seidel, H.-P. 2005. Harmonic guidance for surface deformation. Computer Graphics Forum 24, 3, 601--609.Google ScholarGoogle ScholarCross RefCross Ref
  1. Harmonic volumetric mapping for solid modeling applications

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        SPM '07: Proceedings of the 2007 ACM symposium on Solid and physical modeling
        June 2007
        455 pages
        ISBN:9781595936660
        DOI:10.1145/1236246

        Copyright © 2007 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 4 June 2007

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader