skip to main content
10.1145/1250662.1250664acmconferencesArticle/Chapter ViewAbstractPublication PagesiscaConference Proceedingsconference-collections
Article

Anton, a special-purpose machine for molecular dynamics simulation

Authors Info & Claims
Published:09 June 2007Publication History

ABSTRACT

The ability to perform long, accurate molecular dynamics (MD) simulations involving proteins and other biological macro-molecules could in principle provide answers to some of the most important currently outstanding questions in the fields of biology, chemistry and medicine. A wide range of biologically interesting phenomena, however, occur over time scales on the order of a millisecond--about three orders of magnitude beyond the duration of the longest current MD simulations.

In this paper, we describe a massively parallel machine called Anton, which should be capable of executing millisecond-scale classical MD simulations of such biomolecular systems. The machine, which is scheduled for completion by the end of 2008, is based on 512 identical MD-specific ASICs that interact in a tightly coupled manner using a specialized high-speed communication network. Anton has been designed to use both novel parallel algorithms and special-purpose logic to dramatically accelerate those calculations that dominate the time required for a typical MD simulation. The remainder of the simulation algorithm is executed by a programmable portion of each chip that achieves a substantial degree of parallelism while preserving the flexibility necessary to accommodate anticipated advances in physical models and simulation methods.

References

  1. MD Benchmarks for Amber, CHARMM and NAMD, See http://amber.scripps.edu/amber8.bench2.html.Google ScholarGoogle Scholar
  2. S. A. Adcock and J. A. McCammon, Molecular Dynamics: Survey of Methods for Simulating the Activity of Proteins, Chem. Rev., 106: 1589--1615, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  3. J. Banerjee, D. K. Hsiao, and R. I. Baum, Concepts and Capabilities of a Database Computer, ACM Transactions on Data-base Systems, 3(4): 347--384, 1978. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan, and D. E. Shaw, Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters, Proc. ACM/IEEE Conf. on Supercomputing (SC06), Tampa, FL, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. K. J. Bowers, R. O. Dror, and D. E. Shaw, The Midpoint Method for Parallelization of Particle Simulations, J. Chem. Phys., 124: 184109, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  6. K. J. Bowers, R. O. Dror, and D. E. Shaw, Zonal Methods for the Parallel Execution of Range-Limited N-Body Problems, J. Comput. Phys., 221(1):303--329, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. L. Brooks, B. M. Pettit, and M. Karplus, Structural and Energetic Effects of Truncating Long Ranged Interactions in Ionic and Polar Fluids, J. Chem. Phys., 83(11): 5897--5908, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  8. I. Brooks, C.L. and D. A. Case, Simulations of Peptide Conformational Dynamics and Thermodynamics, Chem. Rev., 93: 2487--2502, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  9. Y. Duan and P. A. Kollman, Pathways to a Protein Folding Intermediate Observed in a 1-Microsecond Simulation in Aqueous Solution, Science, 282(5389): 740--744, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  10. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, A Smooth Particle Mesh Ewald Method, J. Chem. Phys., 103(19): 8577--8593, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  11. B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward, M. Giampapa, Y. Zhestkov, M. C. Pitman, F. Suits, A. Grossfield, J. Pitera, W. Swope, R. Zhou, S. Feller, and R. S. Germain, Blue Matter: Strong scaling of Molecular Dynamics on Blue Gene/L, Proc. International Conf. on Computational Science (ICCS 2006), V. Alexandrov, D. van Albada, P. Sloot, and J. Dongarra, Eds., Springer-Verlag, LNCS, 3992:846--854, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward, M. E. Giampapa, M. C. Pitman, and R. S. Germain, Blue Matter: Approaching the Limits of Concurrency for Classical Molecular Dynamics, Proc. ACM/IEEE Conf. on Supercomputing (SC06), Tampa, FL, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. D. Fine, G. Dimmler, and C. Levinthal, FASTRUN: A Special Purpose, Hardwired Computer for Molecular Simulation, Proteins: Struct, Funct, Genet, 11(4): 242--253, 1991 (erratum: 14(3): 421--422, 1992).Google ScholarGoogle Scholar
  14. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Second ed. London: Academic Press, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. S. Germain, B. Fitch, A. Rayshubskiy, M. Eleftheriou, M. C. Pitman, F. Suits, M. Giampapa, and T. J. C. Ward, Blue Matter on Blue Gene/L: Massively Parallel Computation for Biomolecular Simulation, Proc. 3rd IEEE/ACM/IFIP International Conf. on Hardware/Software Codesign and System Synthesis (CODES+ISSS '05), 207--212, New York, NY, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles. Bristol: Adam Hilger, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, J. Am. Chem. Soc., 118(45): 11225--11236, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  18. M. Karplus and J. A. McCammon, Molecular Dynamics Simulations of Biomolecules, Nat. Struct. Bio., 9(9): 646 -- 652, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  19. P. A. Kollman, R. W. Dixon, W. D. Cornell, T. Fox, C. Chipot, and A. Pohorille, The Development/Application of a "Mini-malist" Organic/Biomolecular Mechanic Forcefield Using a Combination of Ab Initio Calculations and Experimental Data, in Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, W. F. van Gunsteren and P. K. Weiner, Eds. Dordrecht, Netherlands: ESCOM, 1997, 83--96.Google ScholarGoogle Scholar
  20. D. K. Layer and C. Richardson, Lisp Systems in the 1990s, Communications of the ACM, 34(9): 48--57, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, I. Reiher, W. E., B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. J. Karplus, All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, J. Phys. Chem. B, 102(18): 3586--3616, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  22. P. Mark and L. Nilsson, Structure and Dynamics of Liquid Water with Different Long-Range Interaction Truncation and Temperature Control Methods in Molecular Dynamics Simulations, J. Comput. Chem., 23(13): 1211--1219, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  23. V. S. Pande, I. Baker, J. Chapman, S. P. Elmer, S. Khaliq, S. M. Larson, Y. M. Rhee, M. R. Shirts, C. D. Snow, E. J. Sorin, and B. Zagrovic, Atomistic Protein Folding Simulations on the Sub-millisecond Time Scale Using Worldwide Distributed Computing, Biopolymers, 68(1): 91--109, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  24. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhor-shid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, Scalable Molecular Dynamics with NAMD, J. Comput. Chem., 26(16): 1781--1802, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  25. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular-Dynamics, J. Comput. Phys., 117(1): 1--19, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. T. Schlick, R. D. Skeel, A. T. Brunger, L. V. Kalé, J. A. Board, J. Hermans, and K. Schulten, Algorithmic Challenges in Computational Molecular Biophysics, J. Comput. Phys., 151(1): 9--48, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. M. Seibert, A. Patriksson, B. Hess, and D. van der Spoel, Reproducible Polypeptide Folding and Structure Prediction Using Molecular Dynamics Simulations, J. Mol. Biol., 354(1): 173--183, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  28. Y. Shan, J. L. Klepeis, M. P. Eastwood, R. O. Dror, and D. E. Shaw, Gaussian Split Ewald: A Fast Ewald Mesh Method for Molecular Simulation, J. Chem. Phys., 122: 054--101, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  29. D. E. Shaw, A Fast, Scalable Method for the Parallel Evaluation of Distance-Limited Pairwise Particle Interactions, J. Comput. Chem., 26(13): 1318--1328, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  30. M. Snir, A Note on N-Body Computations with Cutoffs, Theor. Comput. Syst., 37: 295--318, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  31. M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, A. Konagaya, Protein Explorer: A Petaflops Special-Purpose Computer System for Molecular Dynamics Simulations, Proc. ACM/IEEE Conf. on Supercomputing (SC03), Phoenix, AZ, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Toyoda, H. Miyagawa, K. Kitamura, T. Amisaki, E. Hashimoto, H. Ikeda, A. Kusumi, and N. Miyakawa, Development of MD Engine: High-Speed Accelerator with Parallel Proc--essor Design for Molecular Dynamics Simulations, J. Comput. Chem., 20(2): 185--199, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  33. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, GROMACS: Fast, Flexible, and Free, J. Comput. Chem., 26(16): 1701--1718, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  34. W. Wang and R. D. Skeel, Fast Evaluation of Polarizable Forces, J. Chem. Phys., 123(16): 164107, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  35. R. Zhou and B. J. Berne, A New Molecular Dynamics Method Combining the Reference System Propagator Algorithm with a Fast Multipole Method for Simulating Proteins and Other Complex Systems, J. Chem. Phys., 103(21): 9444--9459, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  36. R. Zhou, E. Harder, H. Xu, and B. J. Berne, Efficient Multiple Time Step Method for Use with Ewald and Particle Mesh Ewald for Large Biomolecular Systems, J. Chem. Phys., 115(5): 2348--2358, 2001.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Anton, a special-purpose machine for molecular dynamics simulation

                  Recommendations

                  Comments

                  Login options

                  Check if you have access through your login credentials or your institution to get full access on this article.

                  Sign in

                  PDF Format

                  View or Download as a PDF file.

                  PDF

                  eReader

                  View online with eReader.

                  eReader