skip to main content
10.5555/1272690.1272703acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
Article

Cubic shells

Published:03 August 2007Publication History

ABSTRACT

Hinge-based bending models are widely used in the physically-based animation of cloth, thin plates and shells. We propose a hinge-based model that is simpler to implement, more efficient to compute, and offers a greater number of effective material parameters than existing models. Our formulation builds on two mathematical observations: (a) the bending energy of curved flexible surfaces can be expressed as a cubic polynomial if the surface does not stretch; (b) a general class of anisotropic materials---those that are orthotropic---is captured by appropriate choice of a single stiffness per hinge. Our contribution impacts a general range of surface animation applications, from isotropic cloth and thin plates to orthotropic fracturing thin shells.

References

  1. {BD94} Breen D., Donald H.: House, and Michael J. Wozny. Predicting the drape of woven cloth using interacting particles. Proceedings of SIGGRAPH '94 (1994), 365--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. {BMF03} Bridson R., Marino S., Fedkiw R.: Simulation of clothing with folds and wrinkles. SCA (2003), 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. {BW98} Baraff D., Witkin A.: Large steps in cloth simulation. In SIGGRAPH (1998), ACM Press, pp. 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. {BWH*06} Bergou M., Wardetzky M., Harmon D., Zorin D., Grinspun E.: A quadratic bending model for in-extensible surfaces. In SGP (2006), pp. 227--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. {CK03} Choi K.-J., Ko H.-S.: Extending the immediate buckling model to triangular meshes for simulating complex clothes. In Eurographics 2003 Short Presentations (2003), pp. 187--191.Google ScholarGoogle Scholar
  6. {dC92} Do Carmo M.: Riemannian Geometry. Mathematics: Theory and Applications. Birkhäuser, 1992.Google ScholarGoogle Scholar
  7. {GGRZ06} Grinspun E., Gingold Y., Reisman J., Zorin D.: Computing discrete shape operators on general meshes. Comput. Graph. Forum 25, 3 (2006).Google ScholarGoogle ScholarCross RefCross Ref
  8. {GHDS03} Grinspun E., Hirani A. N., Desbrun M., Schröder P.: Discrete shells. SCA (2003), 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {GSH*04} Gingold Y., Secord A., Han J. Y., Grinspun E., Zorin D.: A Discrete Model for Inelastic Deformation of Thin Shells. Tech. rep., Aug 2004.Google ScholarGoogle Scholar
  10. {Hau04} Hauth M.: Visual Simulation of Deformable Models. PhD thesis, University of Tübingen, 2004.Google ScholarGoogle Scholar
  11. {HLW06} Hairer E., Lubich C., Wanner G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, 2006.Google ScholarGoogle Scholar
  12. {HP04} Hildebrandt K., Polthier K.: Anisotropic filtering of non-linear surface features. CGF 23, 3 (2004), 391--400.Google ScholarGoogle ScholarCross RefCross Ref
  13. {Kaw80} Kawabata S.: The Standardization and Analysis of Hand Evaluation. The Hand Evaluation and Standardization Committee, The Textile Machinery Society of Japan, 1980.Google ScholarGoogle Scholar
  14. {MBF04} Molino N., Bao Z., Fedkiw R.: A virtual node algorithm for changing mesh topology during simulation. In SIGGRAPH (2004), pp. 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {Mor99} Morini B.: Convergence behaviour of inexact newton methods. Math. of Comp. 68, 228 (1999), 1605--1613. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. {OH99} O'Brien J. F., Hodgins J. K.: Graphical modeling and animation of brittle fracture. In SIGGRAPH (1999), pp. 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. {PTVF92} Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P.: Numerical Recipes in C: The Art of Scientific Computing. Cam. Univ. Press, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. {SM02} Sidabraite V., Masteikaite V.: A preliminary study for evaluation of skirt asymmetric drape. International Journal of Clothing Science and Technology 14, 5 (2002), 286--298.Google ScholarGoogle ScholarCross RefCross Ref
  19. {TF88} Terzopoulos D., Fleischer K.: Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In SIGGRAPH (1988), pp. 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {TW06} Thomaszewski B., Wacker M.: Bending Models for Thin Flexible Objects. In WSCG Short Comm. (2006).Google ScholarGoogle Scholar
  21. {VK01} Ventsel E., Krauthammer T.: Thin Plates and Shells. CRC Press, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  22. {VMT06} Volino P., Magnenat-Thalmann N.: Simple linear bending stiffness in particle systems. In SCA (2006), pp. 101--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. {WBH*} Wardetzky M., Bergou M., Harmon D., Zorin D., Grinspun E.: Discrete Quadratic Bending Energies. To appear in CAGD, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. {ZT89} Zienkiewicz O. C., Taylor R. L.: The finite element method. McGraw Hill, 1989.Google ScholarGoogle Scholar
  1. Cubic shells

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SCA '07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation
      August 2007
      287 pages
      ISBN:9781595936240

      Publisher

      Eurographics Association

      Goslar, Germany

      Publication History

      • Published: 3 August 2007

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      SCA '07 Paper Acceptance Rate28of81submissions,35%Overall Acceptance Rate183of487submissions,38%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader