skip to main content
article

Geometric modeling in shape space

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

We present a novel framework to treat shapes in the setting of Riemannian geometry. Shapes -- triangular meshes or more generally straight line graphs in Euclidean space -- are treated as points in a shape space. We introduce useful Riemannian metrics in this space to aid the user in design and modeling tasks, especially to explore the space of (approximately) isometric deformations of a given shape. Much of the work relies on an efficient algorithm to compute geodesics in shape spaces; to this end, we present a multi-resolution framework to solve the interpolation problem -- which amounts to solving a boundary value problem -- as well as the extrapolation problem -- an initial value problem -- in shape space. Based on these two operations, several classical concepts like parallel transport and the exponential map can be used in shape space to solve various geometric modeling and geometry processing tasks. Applications include shape morphing, shape deformation, deformation transfer, and intuitive shape exploration.

Skip Supplemental Material Section

Supplemental Material

pps064.mp4

mp4

33.6 MB

References

  1. Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-rigid-as-possible shape interpolation. In Proc. SIGGRAPH '00, 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graphics 22, 3, 587--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. SCAPE: shape completion and animation of people. ACM Trans. Graphics 24, 3, 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Berger, M. 1987. Geometry I, II. Springer.Google ScholarGoogle Scholar
  5. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. Primo: coupled prisms for intuitive surface modeling. In Symp. Geom. Processing, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bottema, O., and Roth, B. 1990. Theoretical kinematics. Dover Publ.Google ScholarGoogle Scholar
  7. Bronstein, A., Bronstein, M., and Kimmel, R. 2005. Isometric embedding of facial surfaces into S3. In Proc. of Scale-Space, 622--631. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cecil, T. 1992. Lie Sphere Geometry. Springer.Google ScholarGoogle Scholar
  9. Charpiat, G., Faugeras, O., and Keriven, R. 2005. Approximations of shape metrics and application to shape warping and empirical statistics. Foundations of Comp. Math., 5, 1--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Charpiat, G., Keriven, R., Pons, J.-P., and Faugeras, O. 2005. Designing spatially coherent minimizing flows for variational problems based on active contours. In Proc. ICCV 2005, vol. 2, 1403--1408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cheng, H.-L., Edelsbrunner, H., and Fu, P. 1998. Shape space from deformation. In Proc. Pacific Graphics, 104--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cox, T., and Cox, M. 2001. Multidimensional Scaling. CRC/Chapman and Hall.Google ScholarGoogle Scholar
  13. Do Carmo, M. P. 1992. Riemannian Geometry. Birkhäuser.Google ScholarGoogle Scholar
  14. Funck, W., Theisel, H., and Seidel, H. 2006. Vector field based shape deformations. ACM Trans. Graphics 25, 3, 1118--1125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Garland, M., and Heckbert, P. 1997. Surface simplification using quadric error metrics. In ACM SIGGRAPH, 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gelfand, I. M., and Fomin, S. V. 1963. Calculus of Variations. Prentice Hall.Google ScholarGoogle Scholar
  17. Hoppe, H. 1996. Progressive meshes. In ACM SIGGRAPH, 99--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L., Teng, S., Bao, H., Guo, B., and Shum, H. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graphics 25, 3, 1126--1134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graphics 24, 3, 1134--1141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graphics 24, 3, 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kendall, D. G. 1984. Shape manifolds, procrustean metrics and complex projective spaces. Bull. London Math. Soc. 18, 81--121.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kilian, M. 2007. Shapes, metrics, and their geodesics. Tech. Rep. 178, Vienna University of Technology.Google ScholarGoogle Scholar
  23. Kimmel, R., and Sethian, J. 1998. Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. 95, 8431--8435.Google ScholarGoogle ScholarCross RefCross Ref
  24. Klassen, E., Srivastava, A., Mio, W., and Joshi, S. H. 2004. Analysis of planar shapes using geodesic paths on shape spaces. IEEE PAMI 26, 3, 372--383. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graphics 23, 3, 861--869. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kraevoy, V., and Sheffer, A. 2007. Mean-value geometry encoding. International Journal of Shape Modeling 12, 1.Google ScholarGoogle Scholar
  27. Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 2005. Linear rotation-invariant coordinates for meshes. ACM Trans. Graphics 24, 3, 479--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lipman, Y., Cohen-Or, D., Gal, R., and Levin, D. 2007. Volume and shape preservation vai moving frame manipulation. ACM Trans. Graphics 26, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Liu, D. C., and Nocedal, J. 1989. On the limited memory BFGS method for large scale optimization. Math. Program. 45, 3, 503--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Memoli, F., and Sapiro, G. 2001. Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces. J. Comput. Phys. 173, 730--764. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Mémoli, F., and Sapiro, G. 2004. Comparing point clouds. In Symp. Geometry Processing, 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Michor, P. W., and Mumford, D. 2006. Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1--48.Google ScholarGoogle ScholarCross RefCross Ref
  33. Pottmann, H., and Wallner, J. 2001. Computational Line Geometry. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. ACM Trans. Graphics 23, 3, 870--877. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sloan, P.-P. J., Rose, C. F., and Cohen, M. F. 2001. Shape by example. In Proc. of the 2001 symposium on interactive 3D graphics, 135--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Symp. Geom. Processing, 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sumner, R. W., and Popovič, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graphics 23, 3, 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Xu, D., Zhang, H., Wang, Q., and Bao, H. 2005. Poisson shape interpolation. In SPM '05: Proc. ACM Symp. on Solid and Physical Modeling, 267--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yezzi, A., and Mennucci, A. 2005. Conformal metrics and true "gradient flows" for curves. In Proc. ICCV '05, 913--919. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Geometric modeling in shape space

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader