skip to main content
10.1145/1275808.1276510acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Construction and optimal search of interpolated motion graphs

Published:29 July 2007Publication History

ABSTRACT

Many compelling applications would become feasible if novice users had the ability to synthesize high quality human motion based only on a simple sketch and a few easily specified constraints. We approach this problem by representing the desired motion as an interpolation of two time-scaled paths through a motion graph. The graph is constructed to support interpolation and pruned for efficient search. We use an anytime version of A* search to find a globally optimal solution in this graph that satisfies the user's specification. Our approach retains the natural transitions of motion graphs and the ability to synthesize physically realistic variations provided by interpolation. We demonstrate the power of this approach by synthesizing optimal or near optimal motions that include a variety of behaviors in a single motion.

Skip Supplemental Material Section

Supplemental Material

pps105.mp4

mp4

34.4 MB

References

  1. Abe, Y., Liu, C. K., and Popović, Z. 2004. Momentum-based parameterization of dynamic character motion. In ACM SIGGRAPH/Eurographics Symp. on Comp. Animation, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arikan, O., and Forsyth, D. A. 2002. Interactive motion generation from examples. ACM Trans. on Graphics 21, 3, 483--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Arikan, O., Forsyth, D. A., and O'Brien, J. F. 2003. Motion synthesis from annotations. ACM Trans. on Graphics 22, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Callennec, B. L., and Boulic, R. 2006. Robust kinematic constraint detection for motion data. In ACM SIGGRAPH/Eurographics Symp. on Comp. Animation, 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Choi, M. G., Lee, J., and Shin, S. Y. 2003. Planning biped locomotion using motion capture data and probabilistic roadmaps. ACM Trans. on Graphics 22, 2, 182--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Trans. on Graphics 22, 3, 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Gleicher, M., Shin, H., Kovar, L., and Jepsen, A. 2003. Snap-together motion: Assembling run-time animation. In ACM SIGGRAPH/Eurographics Symp. on Comp. Animation, 181--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Guo, S., and Roberge, J. 1996. A high-level control mechanism for human locomotion based on parametric frame space interpolation. In EGCAS '96: Seventh International Workshop on Computer Animation and Simulation, 95--107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Heck, R., and Gleicher, M. 2007. Parametric motion graphs. In ACM Symposium on Interactive 3D Graphics, 129--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ikemoto, L., Arikan, O., and Forsyth, D. 2006. Knowing when to put your foot down. In ACM Symposium on Interactive 3D Graphics, 49--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ikemoto, L., Arikan, O., and Forsyth, D. 2007. Quick transitions with cached multi-way blends. In ACM Symposium on Interactive 3D Graphics, 145--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kovar, L., and Gleicher, M. 2003. Flexible automatic motion blending with registration curves. In ACM SIGGRAPH/Eurographics Symp. on Comp. Animation, 214--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kovar, L., and Gleicher, M. 2004. Automated extraction and parameterization of motions in large data sets. ACM Trans. on Graphics 23, 3, 559--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. ACM Trans. on Graphics 21, 3, 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kwon, T., and Shin, S. Y. 2005. Motion modeling for on-line locomotion synthesis. In ACM SIGGRAPH/Eurographics Symp. on Comp. Animation, 29--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lau, M., and Kuffner, J. J. 2005. Behavior planning for character animation. In ACM SIGGRAPH/Eurographics Symp. on Comp. Animation, 271--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lau, M., and Kuffner, J. 2006. Precomputed search trees: Planning for interactive goal-driven animation. In ACM SIGGRAPH/Eurographics Symp. on Comp. Animation, 299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lee, J., and Lee, K. H. 2004. Precomputing avatar behavior from human motion data. In ACM SIGGRAPH/Eurographics Symp. on Comp. Animation, 79--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. 2002. Interactive control of avatars animated with human motion data. ACM Trans. on Graphics 21, 3, 491--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Li, Y., Wang, T., and Shum, H.-Y. 2002. Motion texture: a two-level statistical model for character motion synthesis. ACM Trans. on Graphics 21, 3, 465--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Likhachev, M., Gordon, G., and Thrun, S. 2003. ARA*: Anytime A* with provable bounds on sub-optimality. In Advances in Neural Information Processing Systems (NIPS) 16, Cambridge, MA: MIT Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Park, S. I., Shin, H. J., and Shin, S. Y. 2002. On-line locomotion generation based on motion blending. In ACM SIGGRAPH/Eurographics Symp. on Comp. Animation, 105--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Park, S. I., Shin, H. J., Kim, T. H., and Shin, S. Y. 2004. On-line motion blending for real-time locomotion generation. Computer Animation and Virtual Worlds 15, 3--4, 125--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pearl, J. 1984. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Perlin, K. 1995. Real time responsive animation with personality. IEEE Transactions on Visualization and Computer Graphics 1, 1, 5--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Pullen, K., and Bregler, C. 2002. Motion capture assisted animation: texturing and synthesis. ACM Trans. on Graphics 22, 2, 501--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Reitsma, P. S. A., and Pollard, N. S. 2004. Evaluating motion graphs for character navigation. In ACM SIGGRAPH/Eurographics Symp. on Comp. Animation, 89--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Rose, C., Cohen, M. F., and Bodenheimer, B. 1998. Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics & Applications 18, 5, 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Russell, S., and Norvig, P. 2003. Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ: Prentice-Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Safonova, A., and Hodgins, J. K. 2005. Analyzing the physical correctness of interpolated human motion. In ACM SIGGRAPH/Eurographics Symp. on Comp. Animation, 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. on Graphics 23, 3, 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Shin, H. J., and Oh, H. S. 2006. Fat graphs: Constructing an interactive character with continuous controls. In ACM SIGGRAPH/Eurographics Symp. on Comp. Animation, 291--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Srinivasan, M., Metoyer, R. A., and Mortensen, E. N. 2005. Controllable real-time locomotion using mobility maps. In Proc. of Graphics Interface, 51--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sulejmanpašić, A., and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Trans. on Graphics 24, 1, 165--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sung, M., Kovar, L., and Gleicher, M. 2005. Fast and accurate goal-directed motion synthesis for crowds. In ACM SIGGRAPH/Eurographics Symp. on Comp. Animation, 291--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wiley, D. J., and Hahn, J. K. 1997. Interpolation synthesis of articulated figure motion. IEEE Computer Graphics Applications 17, 6, 39--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Witkin, A., and Kass, M. 1988. Spacetime constraints. Computer Graphics (Proceedings of SIGGRAPH 88) 22, 4, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Construction and optimal search of interpolated motion graphs

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGGRAPH '07: ACM SIGGRAPH 2007 papers
      August 2007
      1019 pages
      ISBN:9781450378369
      DOI:10.1145/1275808

      Copyright © 2007 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 July 2007

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      SIGGRAPH '07 Paper Acceptance Rate108of455submissions,24%Overall Acceptance Rate1,822of8,601submissions,21%

      Upcoming Conference

      SIGGRAPH '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader