skip to main content
article

Wrinkled flames and cellular patterns

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

We model flames and fire using the Navier-Stokes equations combined with the level set method and jump conditions to model the reaction front. Previous works modeled the flame using a combination of propagation in the normal direction and a curvature term which leads to a level set equation that is parabolic in nature and thus overly dissipative and smooth. Asymptotic theory shows that one can obtain more interesting velocities and fully hyperbolic (as opposed to parabolic) equations for the level set evolution. In particular, researchers in the field of detonation shock dynamics (DSD) have derived a set of equations which exhibit characteristic cellular patterns. We show how to make use of the DSD framework in the context of computer graphics simulations of flames and fire to obtain interesting features such as flame wrinkling and cellular patterns.

Skip Supplemental Material Section

Supplemental Material

pps047.mp4

mp4

58.8 MB

References

  1. Adabala, N., and Hughes, C. E. 2004. A parametric model for real-time flickering fire. In Proc. of Comput. Anim. and Social Agents (CASA).Google ScholarGoogle Scholar
  2. Aslam, T., Bdzil, J., and Stewart, D. S. 1996. Level set methods applied to modeling detonation shock dynamics. J. Comput. Phys. 126, 390--409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Aslam, T. D. 1996. Investigations on detonation shock dynamics. PhD thesis, University of Illinois at Urbana-Champaign.Google ScholarGoogle Scholar
  4. Beaudoin, P., Paquet, S., and Poulin, P. 2001. Realistic and Controllable Fire Simulation. In Proc. of Graph. Interface 2001, 159--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bin Zafar, N., Falt, H., Ali, M. Z., and Fong, C. 2004. Dd::fluid::solver::solverfire. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bukowski, R., and Sequin, C. 1997. Interactive Simulation of Fire in Virtual Building Environments. In Proc. of SIGGRAPH 1997, ACM Press / ACM SIGGRAPH, Comput. Graph. Proc., Annual Conf. Series, ACM, 35--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chiba, N., Muraoka, K., Takahashi, H., and Miura, M. 1994. Two dimensional Visual Simulation of Flames, Smoke and the Spread of Fire. J. Vis. and Comput. Anim. 5, 37--53.Google ScholarGoogle ScholarCross RefCross Ref
  8. Dervieux, A., and Thomasset, F. 1979. A finite element method for the simulation of a Rayleigh-Taylor instability. Lecture Notes in Math. 771, 145--158.Google ScholarGoogle ScholarCross RefCross Ref
  9. Dervieux, A., and Thomasset, F. 1981. Multifluid incompressible flows by a finite element method. Lecture Notes in Phys. 141, 158--163.Google ScholarGoogle ScholarCross RefCross Ref
  10. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Feldman, B. E., O'Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 708--715. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Geiger, W., Rasmussen, N., Hoon, S., and Fedkiw, R. 2003. Big bangs. In SIGGRAPH 2003 Sketches & Applications, ACM Press.Google ScholarGoogle Scholar
  14. Geiger, W., Rasmussen, N., Hoon, S., and Fedkiw, R. 2005. Space battle pyromania. In SIGGRAPH 2005 Sketches & Applications, ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 915--920. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Inakage, M. 1989. A Simple Model of Flames. In Proc. of Comput. Graph. Int. 89, Springer-Verlag, 71--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kim, B.-M., Liu, Y., Llamas, I., and Rossignac, J. 2006. Advections with significantly reduced dissipation and diffusion. IEEE Trans. on Vis. and Comput. Graph. In Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lamorlette, A., and Foster, N. 2002. Structural modeling of flames for a production environment. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 729--735. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Losasso, F., Irving, G., Guendelman, E., and Fedkiw, R. 2006. Melting and burning solids into liquids and gases. IEEE Trans. on Vis. and Comput. Graph. 12, 3, 343--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Markstein, G. 1964. Nonsteady Flame Propagation. Pergamon Press.Google ScholarGoogle Scholar
  22. Mazarak, O., Martins, C., and Amanatides, J. 1999. Animating exploding objects. In Proc. of Graph. Interface 1999, 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Melek, Z., and Keyser, J. 2002. Interactive simulation of fire. In Pacific Graph., 431--432. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Melek, Z., and Keyser, J. 2003. Interactive simulation of burning objects. In Pacific Graph., 462--466. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Melek, Z., and Keyser, J. 2005. Multi-representation interaction for physically based modeling. In ACM Symp. on Solid and Physical Modeling, 187--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Melek, Z., and Keyser, J. 2006. Bending burning matches and crumpling burning paper. In Poster, SIGGRAPH Proc., ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Musgrave, F. K. 1997. Great Balls of Fire. In SIGGRAPH 97 Animation Sketches, Visual Proceedings, 259--268.Google ScholarGoogle Scholar
  28. Neff, M., and Fiume, E. 1999. A visual model for blast waves and fracture. In Proc. of Graph. Interface 1999, 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Nguyen, D., Fedkiw, R., and Kang, M. 2001. A boundary condition capturing method for incompressible flame discontinuities. J. Comput. Phys. 172, 71--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nguyen, D., Fedkiw, R., and Jensen, H. 2002. Physically based modeling and animation of fire. ACM Trans. Graph. (SIGGRAPH Proc.) 29, 721--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. O'brien, J., and Hodgins, J. 1999. Graphical modeling and animation of brittle fracture. In Proc. of SIGGRAPH 1999, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Osher, S., and Sethian, J. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Pegoraro, V., and Parker, S. G. 2006. Physically-based realistic fire rendering. In Eurographics Workshop on Natural Phenomena (2006), E. Galin and N. Chiba, Eds., 237--244. Google ScholarGoogle ScholarCross RefCross Ref
  34. Perry, C., and Pigaro, R. 1994. Synthesizing Flames and their Spread. SIGGRAPH 94 Technical Sketches Notes (July).Google ScholarGoogle Scholar
  35. Rasmussen, N., Nguyen, D., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 703--707. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Rushmeier, H. E., Hamins, A., and Choi, M. 1995. Volume Rendering of Pool Fire Data. IEEE Comput. Graph, and Appl. 15, 4, 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 910--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Selle, A., Fedkiw, R., Kim, B.-M., Liu, Y., and Rossignac, J. 2007. An unconditionally stable maccormack method. J. Set. Comput. in review. http://graphics.stanford.edu/~fedkiw/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Stam, J., and Fiume, E. 1995. Depicting Fire and Other Gaseous Phenomena Using Diffusion Process. In Proc. of SIGGRAPH 1995, 129--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Yao, J., and Stewart, D. S. 1996. On the dynamics of multidimensional detonation. J. Fluid Mech. 309, 225--275.Google ScholarGoogle ScholarCross RefCross Ref
  42. Yngve, G. D., O'brien, J. F., and Hodgins, J. K. 2000. Animating explosions. In Proc. of ACM SIGGRAPH 2000, 29--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Zhao, Y, Wei, X., Fan, Z., Kaufman, A., and Qin, H. 2003. Voxels on fire. In Proc. of IEEE Vis., 271--278. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Wrinkled flames and cellular patterns

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 26, Issue 3
          July 2007
          976 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1276377
          Issue’s Table of Contents

          Copyright © 2007 ACM

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 29 July 2007
          Published in tog Volume 26, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader