skip to main content
10.1145/1275808.1276437acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Adaptively sampled particle fluids

Published:29 July 2007Publication History

ABSTRACT

We present novel adaptive sampling algorithms for particle-based fluid simulation. We introduce a sampling condition based on geometric local feature size that allows focusing computational resources in geometrically complex regions, while reducing the number of particles deep inside the fluid or near thick flat surfaces. Further performance gains are achieved by varying the sampling density according to visual importance. In addition, we propose a novel fluid surface definition based on approximate particle-to-surface distances that are carried along with the particles and updated appropriately. The resulting surface reconstruction method has several advantages over existing methods, including stability under particle resampling and suitability for representing smooth flat surfaces. We demonstrate how our adaptive sampling and distance-based surface reconstruction algorithms lead to significant improvements in time and memory as compared to single resolution particle simulations, without significantly affecting the fluid flow behavior.

Skip Supplemental Material Section

Supplemental Material

pps048.mp4

mp4

51.1 MB

References

  1. Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 3, 617--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Amenta, N., Bern, M., and Kamvysselis, M. 1998. A new voronoi-based surface reconstruction algorithm. In SIGGRAPH '98, 415--421. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bargteil, A. W., Goktekin, T. G., O'Brien, J. F., and Strain, J. A. 2006. A semi-lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Blinn, J. F. 1982. A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 3, 235--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. In SIGGRAPH '04, 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In SCA 2005, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Desbrun, M., and Cani, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In 6th Eurographics Workshop on Computer Animation and Simulation '96, 61--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Desbrun, M., and Cani, M.-P. 1998. Active implicit surface for animation. In Graphics Interface, 143--150.Google ScholarGoogle Scholar
  9. Desbrun, M., and Cani, M.-P. 1999. Space-time adaptive simulation of highly deformable substances. Tech. rep., INRIA Nr. 3829.Google ScholarGoogle Scholar
  10. Feldman, B. E., O'Brien, J. F., Klingner, B. M., and Goktekin, T. G. 2005. Fluids in deforming meshes. In SCA 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Foskey, M., Lin, M. C., and Manocha, D. 2003. Efficient computation of a simplified medial axis. In SM 2003, 96--107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Mod. and Im. Proc. 58, 5, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Foster, N., and Metaxas, D. 1997. Controlling fluid animation. 178--188.Google ScholarGoogle Scholar
  14. Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R. 2000. Adaptively sampled distance fields: a general representation of shape for computer graphics. In SIGGRAPH '00, 249--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. In SIGGRAPH '05, 973--981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. 24, 3, 915--920. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Irving, G., Guendelman, E., Losasso, F., and Fedkiw, R. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. 25, 3,805--811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kipfer, P., and Westermann, R. 2006. Realistic and interactive simulation of rivers. In Proceedings Graphics Interface 2006, 41--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kitsionas, S., and Whitworth, A. P. 2002. Smoothed particle hydrodynamics with particle splitting, applied to self-gravitating collapse. Monthly Notices of the Royal Astronomical Society 330.Google ScholarGoogle Scholar
  20. Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. In SIGGRAPH '06. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kolluri, R., O'Brien, J. F., and Shewchuck, J. R. 2004. Provably better moving least squares. In Annual Fall Workshop on Computational Geometry.Google ScholarGoogle Scholar
  22. Lastiwka, M., Quinlan, N., and Basa, M. 2005. Adaptive particle distribution for smoothed particle hydrodynamics. Int. J. Numer. Meth. Fluids 47.Google ScholarGoogle Scholar
  23. Liu, M. B., Liu, G. R., and Lam, K. Y. 2006. Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength. Shock Waves 15.Google ScholarGoogle Scholar
  24. Lorensen, W. E., and Cline, H. E. 1987. Marching cubes: A high resolution 3d surface construction algorithm. In SIGGRAPH '87, vol. 21, 163--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In SIGGRAPH '04, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Monaghan, J. J. 2005. Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703--1758.Google ScholarGoogle ScholarCross RefCross Ref
  27. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In SCA 2003, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Owen, J. M., Villumsen, J. V., Shapiro, P. R., and Martel, H. 1998. Adaptive smoothed particle hydrodynamics: Methodology. II. The Astroph. J. Sup. Series 116.Google ScholarGoogle Scholar
  29. Pauly, M., Keiser, R., Adams, B., Dutré;, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3, 957--964. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A. E., and Whitaker, R. T. 2003. Particle-based simulation of fluids. Comput. Graph. Forum 22, 3, 401--410.Google ScholarGoogle ScholarCross RefCross Ref
  31. Sethian, J. A. 1999. Level Set Methods and Fast Marching Methods. Cambridge University Press.Google ScholarGoogle Scholar
  32. Shi, L., and Yu, Y. 2004. Visual smoke simulation with adaptive octree refinement. In Computer Graphics and Imaging.Google ScholarGoogle Scholar
  33. Stam, J. 1999. Stable fluids. In SIGGRAPH '99, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Thürey, N., Rüde, U., and Stamminger, M. 2006. Animation of open water phenomena with coupled shallow water and free surface simulation. In SCA 2006, 157--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. In SIGGRAPH '06, 826--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Adaptively sampled particle fluids

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGGRAPH '07: ACM SIGGRAPH 2007 papers
            August 2007
            1019 pages
            ISBN:9781450378369
            DOI:10.1145/1275808

            Copyright © 2007 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 29 July 2007

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • Article

            Acceptance Rates

            SIGGRAPH '07 Paper Acceptance Rate108of455submissions,24%Overall Acceptance Rate1,822of8,601submissions,21%

            Upcoming Conference

            SIGGRAPH '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader