skip to main content
article

Geometry of multi-layer freeform structures for architecture

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

The geometric challenges in the architectural design of freeform shapes come mainly from the physical realization of beams and nodes. We approach them via the concept of parallel meshes, and present methods of computation and optimization. We discuss planar faces, beams of controlled height, node geometry, and multilayer constructions. Beams of constant height are achieved with the new type of edge offset meshes. Mesh parallelism is also the main ingredient in a novel discrete theory of curvatures. These methods are applied to the construction of quadrilateral, pentagonal and hexagonal meshes, discrete minimal surfaces, discrete constant mean curvature surfaces, and their geometric transforms. We show how to design geometrically optimal shapes, and how to find a meaningful meshing and beam layout for existing shapes.

Skip Supplemental Material Section

Supplemental Material

pps065.mp4

mp4

37.7 MB

References

  1. Akleman, E., Srinivasan, V., and Mandal, E. 2005. Remeshing schemes for semi-regular tilings. In Shape Modeling and Applications, Proceedings. IEEE, 44--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alliez, P., Cohen-Steiner, D., Devillers, O., Levy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. ACM Trans. Graphics 22, 3, 485--493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Blaschke, W. 1929. Vorlesungen über Differentialgeometrie, vol. 3. Springer.Google ScholarGoogle Scholar
  4. Bobenko, A., and Pinkall, U. 1996. Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187--208.Google ScholarGoogle Scholar
  5. Bobenko, A., and Springborn, B. 2004. Variational principles for circle patterns and Koebe's theorem. Trans. Amer. Math. Soc. 356, 659--689.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bobenko, A., and Suris, Yu., 2005. Discrete differential geometry. Consistency as integrability. Monograph pre-published at http://www.arxiv.org/math/0504358.Google ScholarGoogle Scholar
  7. Bobenko, A., and Suris, Yu. 2007. On organizing principles of discrete differential geometry, geometry of spheres. Russian Math. Surveys 62, 1, 1--43.Google ScholarGoogle ScholarCross RefCross Ref
  8. Bobenko, A., Hoffmann, T., and Springborn, B. 2006. Minimal surfaces from circle patterns: Geometry from combinatorics. Ann. of Math. 164, 231--264.Google ScholarGoogle ScholarCross RefCross Ref
  9. Brell-Cokcan, S., and Pottmann, H., 2006. Tragstruktur für Freiformflächen in Bauwerken. Patent No. A1049/2006.Google ScholarGoogle Scholar
  10. Cecil, T. 1992. Lie Sphere Geometry. Springer.Google ScholarGoogle Scholar
  11. Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. ACM Trans. Graphics 23, 3, 905--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cutler, B., and Whiting, E. 2007. Constrained planar remeshing for architecture. In Proc. Graphics Interface. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Glymph, J., Shelden, D., Ceccato, C., Mussel, J., and Schober, H. 2002. A parametric strategy for freeform glass structures using quadrilateral planar facets. In Acadia 2002, ACM, 303--321.Google ScholarGoogle Scholar
  14. Grosse-Brauckmann, K., and Polthier, K. 1997. Constant mean curvature surfaces derived from Delaunay's and Wente's examples. In Visualization and mathematics. Springer, 119--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hoffmann, T. 1998. Discrete rotational CMC surfaces and the elliptic billiard. In Mathematical Visualization, H. C. Hege and K. Polthier, Eds. Springer, 117--124.Google ScholarGoogle Scholar
  16. Kelley, C. T. 1999. Iterative Methods for Optimization. SIAM.Google ScholarGoogle Scholar
  17. Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., and Wang, W. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graphics 25, 3, 681--689. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Maekawa, T. 1999. An overview of offset curves and surfaces. Computer-Aided Design 31, 251--267.Google ScholarGoogle ScholarCross RefCross Ref
  19. Nishikawa, Y., et al. 1998. Measurements of interfacial curvatures of bicontinuous structure from three-dimensional digital images. 1. A parallel surface method. Langmuir 14, 1241--1249.Google ScholarGoogle ScholarCross RefCross Ref
  20. Oswald, P., and Schröder, P. 2003. Composite primal/dual √3-subdivision schemes. Comp. Aid. Geom. Des. 20, 135--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Polthier, K. 2002. Polyhedral surfaces of constant mean curvature. Habilitationsschrift TU Berlin.Google ScholarGoogle Scholar
  22. Polthier, K. 2002. Unstable periodic discrete minimal surfaces. In Nonlinear Partial Differential Equations. Springer, 127--143.Google ScholarGoogle Scholar
  23. Pottmann, H., and Wallner, J. 2007. The focal geometry of circular and conical meshes. Adv. Comput. Math. to appear.Google ScholarGoogle Scholar
  24. Pottmann, H., Brell-Cokcan, S., and Wallner, J. 2007. Discrete surfaces for architectural design. In Curves and Surfaces: Avignon 2006, P. Chenin et al., Eds. Nashboro Press.Google ScholarGoogle Scholar
  25. Sauer, R. 1970. Differenzengeometrie. Springer.Google ScholarGoogle Scholar
  26. Schief, W. K. 2006. On a maximum principle for minimal surfaces and their integrable discrete counterparts. J. Geom. Physics 56, 1484--1495.Google ScholarGoogle ScholarCross RefCross Ref
  27. Schmitt, N., 2003. Noid. Java Applet, http://www-sfb288.math.tu-berlin.de/~nick/Noid/NoidApplet.html.Google ScholarGoogle Scholar
  28. Schmitt, N., 2004. Constant mean curvature trinoids. preprint, http://www.arxiv.org/math/0403036.Google ScholarGoogle Scholar
  29. Schneider, R. 1993. Convex bodies: the Brunn-Minkowski theory. Cambridge University Press.Google ScholarGoogle Scholar
  30. Schober, H. 2003. Freeform glass structures. In Glass Processing Days 2003. Glass Processing Days, Tampere (Fin.), 46--50.Google ScholarGoogle Scholar
  31. Schramm, O. 1997. Circle patterns with the combinatorics of the square grid. Duke Math. J. 86, 347--389.Google ScholarGoogle ScholarCross RefCross Ref
  32. Sechelmann, S., 2006. Koebe polyhedron editor. Java Applet, http://www.math.tu-berlin.de/geometrie/ps/software.shtml.Google ScholarGoogle Scholar
  33. SG. The smart geometry group. http://www.smartgeometry.com.Google ScholarGoogle Scholar
  34. Sullivan, J. 2005. The aesthetic value of optimal geometry. In The Visual Mind II, M. Emmer, Ed. MIT Press, 547--563.Google ScholarGoogle Scholar
  35. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Symp. Geometry Processing. 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ziegler, G. 1995. Lectures on Polytopes. Springer.Google ScholarGoogle Scholar

Index Terms

  1. Geometry of multi-layer freeform structures for architecture

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader