skip to main content
article

Gradient domain editing of deforming mesh sequences

Published: 29 July 2007 Publication History

Abstract

Many graphics applications, including computer games and 3D animated films, make heavy use of deforming mesh sequences. In this paper, we generalize gradient domain editing to deforming mesh sequences. Our framework is keyframe based. Given sparse and irregularly distributed constraints at unevenly spaced keyframes, our solution first adjusts the meshes at the keyframes to satisfy these constraints, and then smoothly propagate the constraints and deformations at keyframes to the whole sequence to generate new deforming mesh sequence. To achieve convenient keyframe editing, we have developed an efficient alternating least-squares method. It harnesses the power of subspace deformation and two-pass linear methods to achieve high-quality deformations. We have also developed an effective algorithm to define boundary conditions for all frames using handle trajectory editing. Our deforming mesh editing framework has been successfully applied to a number of editing scenarios with increasing complexity, including footprint editing, path editing, temporal filtering, handle-based deformation mixing, and spacetime morphing.

References

[1]
Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-rigid-as-possible shape interpolation. In SIGGRAPH 2000 Conference Proceedings, 157--164.
[2]
Alexa, M. 2003. Differential coordinates for local mesh morphing and deformation. The Visual Computer 19, 2, 105--114.
[3]
Au, O. K.-C., Tai, C.-L., Liu, L., and Fu, H. 2006. Dual laplacian editing for meshes. IEEE Transactions on Visualization and Computer Graphics 12, 3, 386--395.
[4]
Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. Primo: Coupled prisms for intuitive surface modeling. 11--20.
[5]
Davis, T. A. 2005. Umfpack version 4.4 user guide. Tech. Rep. TR-04-003, University of Florida.
[6]
Davis, T. A. 2006. User guide for cholmod. Tech. rep., University of Florida.
[7]
Der, K., Sumner, R., and Popović, J. 2006. Inverse kinematics for reduced deformable models. ACM Transactions on Graphics 25, 3, 1174--1179.
[8]
Gleicher, M. 2001. Motion path editing. In Symposium on Interactive 3D Graphics, 195--202.
[9]
Guskov, I., Sweldens, W., and Schröder, P. 1999. Multiresolution signal processing for meshes. In Proc. SIGGRAPH'99, 325--334.
[10]
Horn, B. 1987. Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4, 4, 629--642.
[11]
Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Transactions on Graphics 25, 3, 1126--1134.
[12]
Igarashi, T., Moscovich, T., and Hughes, J. 2005. Asrigid-as-possible shape manipulation. ACM TOG 24, 3, 1134--1141.
[13]
James, D., and Twigg, C. 2005. Skinning mesh animations. ACM TOG 24, 3, 399--407.
[14]
Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Transactions on Graphics 24, 3, 561--566.
[15]
Kircher, S., and Garland, M. 2006. Editing arbitrarily deforming surface animations. ACM Transactions on Graphics 25, 3, 1098--1107.
[16]
Kobbelt, L., Campagna, S., Vorsatz, J., and Seidel, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. In Proc. SIGGRAPH'98, 105--114.
[17]
Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3d models. ACM Transactions on Graphics 23, 3, 861--869.
[18]
Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 2005. Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics 24, 3.
[19]
Lipman, Y., Cohen-Or, D., Gal, R., and Levin, D. 2006. Volume and shape preservation via moving frame manipulation. Technical report.
[20]
Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM TOG 22, 3, 562--568.
[21]
Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Transactions on Graphics 24, 3.
[22]
Park, S., and Hodgins, J. 2006. Capturing and animating skin deformation in human motion. ACM Transactions on Graphics 25, 3, 881--889.
[23]
Sheffer, A., and Kraevoy, V. 2004. Pyramid coordinates for morphing and deformation. In Second International Symposium on 3D Data Processing, Visualization, and Transmission, 68--75.
[24]
Shi, L., Yu, Y., Bell, N., and Feng, W.-W. 2006. A fast multigrid algorithm for mesh deformation. ACM Transactions on Graphics 25, 3, 1108--1117.
[25]
Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Symposium of Geometry Processing.
[26]
Sumner, R., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Transactions on Graphics 23, 3, 397--403.
[27]
Sumner, R., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Transactions on Graphics 24, 3, 488--495.
[28]
Wang, J., Drucker, S., Agrawala, M., and Cohen, M. 2006. The cartoon animation filter. ACM Transactions on Graphics 25, 3, 1169--1173.
[29]
Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Transactions on Graphics (special issue for SIGGRAPH 2004) 23, 3, 641--648.
[30]
Zayer, R., Rössl, C., Karni, Z., and Seidel, H.-P. 2005. Harmonic guidance for surface deformation. Computer Graphics Forum (Eurographics 2005) 24, 3.
[31]
Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. 2005. Large mesh deformation using the volumetric graph laplacian. ACM Transactions on Graphics 24, 3, 496--503.
[32]
Zorin, D., Schröder, P., and Sweldens, W. 1997. Interactive mutiresolution mesh editing. In SIGGRAPH 97 Proceedings, 259--268.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 26, Issue 3
July 2007
976 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1276377
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 July 2007
Published in TOG Volume 26, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. control meshes
  2. handle trajectory
  3. keyframes
  4. local frames
  5. mesh deformation
  6. rotation interpolation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)15
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Hierarchical Spherical Cross‐Parameterization for Deforming CharactersComputer Graphics Forum10.1111/cgf.1519743:6Online publication date: 19-Sep-2024
  • (2024)Editing mesh sequences with varying connectivityComputers and Graphics10.1016/j.cag.2024.103943121:COnline publication date: 1-Jun-2024
  • (2024)Geometry-aware 3D pose transfer using transformer autoencoderComputational Visual Media10.1007/s41095-023-0379-810:6(1063-1078)Online publication date: 22-Mar-2024
  • (2024)Non-corresponding and topology-free 3D face expression transferThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03473-540:10(7057-7074)Online publication date: 1-Oct-2024
  • (2023)Automatic Human Scene Interaction through Contact Estimation and Motion AdaptationProceedings of the 31st ACM International Conference on Multimedia10.1145/3581783.3612218(7628-7637)Online publication date: 26-Oct-2023
  • (2021)A Revisit of Shape Editing Techniques: From the Geometric to the Neural ViewpointJournal of Computer Science and Technology10.1007/s11390-021-1414-936:3(520-554)Online publication date: 31-May-2021
  • (2021)Dragoon: a hybrid and efficient big trajectory management system for offline and online analyticsThe VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-021-00652-x30:2(287-310)Online publication date: 3-Feb-2021
  • (2020)Neural Pose Transfer by Spatially Adaptive Instance Normalization2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR42600.2020.00587(5830-5838)Online publication date: Jun-2020
  • (2019)A fast numerical solver for local barycentric coordinatesComputer Aided Geometric Design10.1016/j.cagd.2019.04.006Online publication date: Apr-2019
  • (2018)Aura Mesh: Motion Retargeting to Preserve the Spatial Relationships between Skinned CharactersComputer Graphics Forum10.1111/cgf.1336337:2(311-320)Online publication date: 22-May-2018
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media