skip to main content
10.1145/1277548.1277553acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

Differential equations for algebraic functions

Authors Info & Claims
Published:29 July 2007Publication History

ABSTRACT

It is classical that univariate algebraic functions satisfy linear differential equations with polynomial coefficients. Linear recurrences follow for the coefficients of their power series expansions. We show that the linear differential equation of minimal order has coefficients whose degree is cubic in the degree of the function. We also show that there exists a linear differential equation of order linear in the degree whose coefficients are only of quadratic degree. Furthermore, we prove the existence of recurrences of order and degree close to optimal. We study the complexity of computing these differential equations and recurrences. We deduce a fast algorithm for the expansion of algebraic series.

References

  1. N. H. Abel. (Euvres complètes. Tome II. Éd. J. Gabay, 1992. Reprint of the 2nd (1881) ed. Available at http://gallica.bnf.fr.Google ScholarGoogle Scholar
  2. G. Almkvist and D. Zeilberger. The method of differentiating under the integral sign. J. Symbolic Comput., 10(6):571--591, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Apagodu and D. Zeilberger. Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory. Adv. in Appl. Math., 37(2):139--152, 2006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. Bini and V. Y. Pan. Polynomial and matrix computations. Vol. 1. Birkhäuser, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user language. J. Symbolic Comput., 24(3-4):235--265, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Bostan, P. Gaudry, and É. Schost. Linear recurrences with polynomial coefficients and computation of the Cartier-Manin operator on hyperelliptic curves. SIAM J. Comput., 36(6):1777--1806, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. G. Chèze and G. Lecerf. Lifting and recombination techniques for absolute factorization. J. Complexity, doi:10.1016/j.jco.2007.01.008, in press, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. V. Chudnovsky and G. V. Chudnovsky. On expansion of algebraic functions in power and Puiseux series. I. J. Complexity, 2(4):271--294, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. V. Chudnovsky and G. V. Chudnovsky. On expansion of algebraic functions in power and Puiseux series. II. J. Complexity, 3(1):1--25, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. V. Chudnovsky and G. V. Chudnovsky. Computer algebra in the service of mathematical physics and number theory. In Computers in mathematics (Stanford, CA, 1986), 109--232, 1990. Dekker.Google ScholarGoogle Scholar
  11. J. Cockle. On transcendental and algebraic solution. Philosophical Magazine, XXI:379--383, 1861.Google ScholarGoogle Scholar
  12. L. Comtet. Calcul pratique des coefficients de Taylor d'une fonction algébrique. Enseignement Math. (2), 10:267--270, 1964.Google ScholarGoogle Scholar
  13. O. Cormier, M. F. Singer, B. M. Trager, and F. Ulmer. Linear differential operators for polynomial equations. J. Symbolic Comput., 34(5):355--398, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Gray. Linear differential equations and group theory from Riemann to Poincaré. Birkhäuser, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  15. R. Harley. On the theory of the transcendental solution of algebraic equations. Quart. J. of Pure and Applied Math, 5:337--361, 1862.Google ScholarGoogle Scholar
  16. J. M. Nahay. Linear differential resolvents. PhD thesis, Rutgers University, 2000.Google ScholarGoogle Scholar
  17. J. M. Nahay. Linear relations among algebraic solutions of differential equations. J. Differential Equations, 191(2):323--347, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. M. Nahay. Differential resolvents of minimal order and weight. Int. J. Math. and Math. Sciences, 2004(53-56):2867--2893, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  19. A. Storjohann. Notes on computing minimal approximant bases. Dagstuhl preprint, 2006.Google ScholarGoogle Scholar
  20. N. Takayama. An approach to the zero recognition problem by Buchberger algorithm. J. Symbolic Comput., 14(2-3):265--282, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Tannery. Propriétés des intégrales deséquations différentielles linéaires à coefficients variables. Annales scientifiques de l'ENS Sér. 2, 4:113--182, 1875.Google ScholarGoogle Scholar
  22. H. Tsai. Weyl closure of a linear differential operator. J. Symbolic Comput., 29(4-5):747--775, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, 2nd ed., 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C. K. Yap. Fundamental Problems in Algorithmic Algebra. Oxford University Press, New York, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. D. Zeilberger. The method of creative telescoping. J. Symbolic Comput., 11(3):195--204, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Differential equations for algebraic functions

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ISSAC '07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation
      July 2007
      406 pages
      ISBN:9781595937438
      DOI:10.1145/1277548
      • General Chair:
      • Dongming Wang

      Copyright © 2007 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 July 2007

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      Overall Acceptance Rate395of838submissions,47%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader