skip to main content
10.1145/1277548.1277563acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

Non-associative gröbner bases, finitely-presented lie rings and the engel condition

Published: 29 July 2007 Publication History

Abstract

We give an algorithm for constructing a basis and a multiplication table of a finite-dimensional finitely-presented Liering. We apply this to construct the biggest t generator Lie rings that satisfy the n-Engel condition, for (t,n) = (t,2), (2,3), (3,3), (2,4).

References

[1]
William W. Adams and Philippe Loustaunau. An introduction to Gröbner bases, volume 3 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1994.
[2]
The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.4, 2004. (http://www.gap-system.org).
[3]
Lothar Gerritzen. Tree polynomials and non-associative Gröbner bases. J. Symbolic Comput., 41(3-4):297--316, 2006.
[4]
W. A. de Graaf. Lie Algebras: Theory and Algorithms, volume 56 of North-Holland Mathematical Library. Elsevier Science, 2000.
[5]
W. A. de Graaf and J. Wisliceny. Constructing bases of finitely presented Lie algebras using Gröbner bases in free algebras. In S. Dooley, editor, Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation: ISSAC'99, pages 37--43. ACM Press, 1999.
[6]
G. Havas, M. F. Newman, and M. R. Vaughan-Lee. A nilpotent quotient algorithm for graded Lie rings. J. Symbolic Comput., 9(5-6):653--664, 1990.
[7]
P. J. Higgins. Lie rings satisfying the Engel condition. Proc. Cambridge Philos. Soc., 50:8--15, 1954.
[8]
B. Huppert and N. Blackburn. Finite Groups II. Springer Verlag, New York, Heidelberg, Berlin, 1982.
[9]
A. I. Kostrikin. Around Burnside, volume 20 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) {Results in Mathematics and Related Areas (3)}. Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by James Wiegold.
[10]
M. A. A. van Leeuwen and M. Roelofs. Termination for a class of algorithms for constructing algebras given by generators and relations. J. Pure Appl. Algebra, 117/118:431--445, 1997.
[11]
M. F. Newman, E. A. O'Brien, and M. R. Vaughan-Lee. Groups and nilpotent Lie rings whose order is the sixth power of a prime. J. Algebra, 278(1):383--401, 2004.
[12]
E. A. O'Brien and M. R. Vaughan-Lee. The groups with order p7 for odd prime p. J. Algebra, 292(1):243--258, 2005.
[13]
Saeed Rajaee. Non-associative Gröbner bases. J. Symbolic Comput., 41(8):887--904, 2006.
[14]
C. Schneider. Computing nilpotent quotients in finitely presented Lie rings. Discrete Math. Theor. Comput. Sci., 1(1):1--16 (electronic), 1997.
[15]
C. C. Sims. Computation with Finitely Presented Groups. Cambridge University Press, Cambridge, 1994.
[16]
Gunnar Traustason. Engel Lie-algebras. Quart. J. Math. Oxford Ser. (2), 44(175):355--384, 1993.
[17]
Gunnar Traustason. A polynomial upper bound for the nilpotency classes of Engel-3 Lie algebras over a field of characteristic 2. J. London Math. Soc. (2), 51(3):453--460, 1995.
[18]
M. R. Vaughan-Lee. On Zel'manov's solution of the restricted Burnside problem. J. Group Theory, 1(1):65--94, 1998.
[19]
M. R. Vaughan-Lee. Lie methods in group theory. In Groups St. Andrews 2001 in Oxford. Vol. II, volume 305 of London Math. Soc. Lecture Note Ser., pages 547--0585. Cambridge Univ. Press, Cambridge, 2003.

Cited By

View all
  • (2011)Engel conditions and symmetric tensorsLinear and Multilinear Algebra10.1080/0308108100362129559:4(441-449)Online publication date: Apr-2011
  • (2009)Non-associative Gröbner bases, finitely-presented Lie rings and the Engel condition, IIJournal of Symbolic Computation10.1016/j.jsc.2008.04.00744:7(786-800)Online publication date: 1-Jul-2009

Index Terms

  1. Non-associative gröbner bases, finitely-presented lie rings and the engel condition

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation
    July 2007
    406 pages
    ISBN:9781595937438
    DOI:10.1145/1277548
    • General Chair:
    • Dongming Wang
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 July 2007

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. engel condition
    2. gröbner basis
    3. lie ring

    Qualifiers

    • Article

    Conference

    ISSAC07
    Sponsor:
    ISSAC07: International Symposium on Symbolic and Algebraic Computation
    July 29 - August 1, 2007
    Ontario, Waterloo, Canada

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2011)Engel conditions and symmetric tensorsLinear and Multilinear Algebra10.1080/0308108100362129559:4(441-449)Online publication date: Apr-2011
    • (2009)Non-associative Gröbner bases, finitely-presented Lie rings and the Engel condition, IIJournal of Symbolic Computation10.1016/j.jsc.2008.04.00744:7(786-800)Online publication date: 1-Jul-2009

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media