skip to main content
10.5555/1283383.1283440acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
Article

Efficient subspace approximation algorithms

Published: 07 January 2007 Publication History

Abstract

Confronted with high-dimensional data arising from either word-document count, global climate patterns or any one of the myriad other sources, most scientific approaches extract a good low-dimensional summary. This desire to reduce dimensionality may be seen as a consequence of Occam's Razor, and the scientific methodologies we have in mind include those from data mining and statistics.

References

[1]
P. Agarwal, S. Har-Peled, and K. Varadarajan, Geometric approximation via coresets, in J. Goodman, J. Pach, and E. Welzl (Eds), Combinatorial and Computational Geometry, Cambridge University Press, 2005.
[2]
M. Bǎdoiu and P. Indyk, Fast approximation algorithms for the hyperplane fitting problem, Manuscript, 2006.
[3]
M. Bǎdoiu, S. Har-Peled, and P. Indyk, Approximate clustering via core-sets, in Proc. 34th Annu. ACM Sympos. Theory Comput., pp. 250--257, 2002.
[4]
A. Brieden, Geometric optimization problems likely not contained in apx, DCG, 28(2) (2002), pp. 201--209.
[5]
R. Chandrasekharan and A. Tamir, Algebraic optimization: the Fermat-Weber location problem, Mathematical Programming, 46 (1990), pp. 219--224.
[6]
K. Clarkson, Subgradient and sampling algorithms for L 1 regression, In Proceedings of SODA 2005.
[7]
A. Deshpande, L. Rademacher, S. Vempala, and G. Wang, Matrix approximation and projective clustering via volume sampling, in Proceedings of SODA 2006.
[8]
A. Deshpande and S. Vempala, Adaptive sampling and fast low-rank matrix approximation, Proceedings of RANDOM 2006.
[9]
J. M. Diaz-Banez, J. A. Mesa, and A. Schobel, Continuous location of dimensional structures, European Journal of Operations Research, 152 (2004), pp. 22--44.
[10]
P. Drineas, M. .W. Mahoney, and S. Muthukrishnan, Sampling algorithms for L 2 regression and applications, In Proceedings of SODA 2005.
[11]
P. Drineas, M. .W. Mahoney, and S. Muthukrishnan, Subspace sampling and relative error matrix approximation: column-based methods, Proceedings of RANDOM 2006.
[12]
U. Faigle, W. Kern, and M. Streng, Note on the computational complexity of j-radii of polytopes in R n , Mathematical Programming, 73 (1996), pp. 1--5.
[13]
D. Feldman, A. Fiat, and M. Sharir, Coresets for weighted facilities and their applications, Proceedings of FOCS 2006.
[14]
A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for finding low rank approximations, J. ACM, 51(6) (2004), pp. 1025--1041.
[15]
P. Gritzmann and V. Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces, Math. Program., 59 (1993), pp. 163--213.
[16]
P. Gritzmann and V. Klee, On the complexity of some basic problems in computational convexity: I. containment problems, Discrete Math., 136 (1994), pp. 129--174.
[17]
S. Har-Peled, How to get close to the median shape, in Proc. ACM Symp. Comput. Geom. (2006).
[18]
S. Har-Peled, Low rank matrix approximation in linear time, Manuscript (2006).
[19]
S. Har-Peled and K. R. Varadarajan, Projective clustering in high dimensions using core-sets, in Proc. 18th Annu. ACM Sympos. Comput. Geom. (2002), pp. 312--318.
[20]
S. Har-Peled and K. Varadarajan, High-Dimensional Shape Fitting in Linear Time, Discrete & Computational Geometry, 32(2) (2004), pp. 269--288.
[21]
N. M. Korneenko and H. Martini, Hyperplane approximation and related topics, in New Trends in Discrete and Computational Geometry, Springer-Verlag, New York, 1993.
[22]
H. Martini, Minsum k-flats of finite point sets in R d , Studies in Locational Analysis, 7 (1994), pp. 123--129.
[23]
N. Megiddo, On the complexity of some geometric problems in unbounded dimension, J. Symb. Comput., 10 (1990), pp. 327--334.
[24]
R. Panigrahy, Minimum enclosing polytope in high dimensions, in arXiv.org, cs.CG/0407020.
[25]
S. Roweis, L. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science, 290 (2000), pp. 2323--26.
[26]
T. Sarlos, Improved Approximation algorithms for large matrices via random projections, Proceedings of FOCS 2006.
[27]
J. Tenenbaum, V. de Silva and J. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, 290 (2000), pp. 2319--23.
[28]
K. R. Varadarajan, S. Venkatesh, and J. Zhang, Approximating the radii of point sets in high dimensions, in Proc. 43th Annu. IEEE Sympos. Found. Comput. Sci., 2002.
[29]
Y. Ye and J. Zhang, An improved algorithm for approximating the radii of point sets, in Proc. APPROX, 2003.

Cited By

View all
  • (2017)Local reconstruction of low-rank matrices and subspacesRandom Structures & Algorithms10.1002/rsa.2072051:4(607-630)Online publication date: 1-Dec-2017
  • (2016)Bypassing UGC from Some Optimal Geometric Inapproximability ResultsACM Transactions on Algorithms10.1145/273772912:1(1-25)Online publication date: 8-Feb-2016
  • (2015)More Constraints, Smaller CoresetsProceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining10.1145/2783258.2783312(249-258)Online publication date: 10-Aug-2015
  • Show More Cited By
  1. Efficient subspace approximation algorithms

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SODA '07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms
    January 2007
    1322 pages
    ISBN:9780898716245
    • Conference Chair:
    • Harold Gabow

    Sponsors

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 07 January 2007

    Check for updates

    Qualifiers

    • Article

    Acceptance Rates

    SODA '07 Paper Acceptance Rate 139 of 382 submissions, 36%;
    Overall Acceptance Rate 411 of 1,322 submissions, 31%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)7
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 01 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2017)Local reconstruction of low-rank matrices and subspacesRandom Structures & Algorithms10.1002/rsa.2072051:4(607-630)Online publication date: 1-Dec-2017
    • (2016)Bypassing UGC from Some Optimal Geometric Inapproximability ResultsACM Transactions on Algorithms10.1145/273772912:1(1-25)Online publication date: 8-Feb-2016
    • (2015)More Constraints, Smaller CoresetsProceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining10.1145/2783258.2783312(249-258)Online publication date: 10-Aug-2015
    • (2013)Turning big data into tiny dataProceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms10.5555/2627817.2627920(1434-1453)Online publication date: 6-Jan-2013
    • (2012)A near-linear algorithm for projective clustering integer pointsProceedings of the twenty-third annual ACM-SIAM symposium on Discrete algorithms10.5555/2095116.2095221(1329-1342)Online publication date: 17-Jan-2012
    • (2012)Bypassing UGC from some optimal geometric inapproximability resultsProceedings of the twenty-third annual ACM-SIAM symposium on Discrete algorithms10.5555/2095116.2095174(699-717)Online publication date: 17-Jan-2012
    • (2011)Algorithms and hardness for subspace approximationProceedings of the twenty-second annual ACM-SIAM symposium on Discrete algorithms10.5555/2133036.2133075(482-496)Online publication date: 23-Jan-2011
    • (2011)Near-optimal private approximation protocols via a black box transformationProceedings of the forty-third annual ACM symposium on Theory of computing10.1145/1993636.1993733(735-744)Online publication date: 6-Jun-2011
    • (2011)A unified framework for approximating and clustering dataProceedings of the forty-third annual ACM symposium on Theory of computing10.1145/1993636.1993712(569-578)Online publication date: 6-Jun-2011
    • (2010)Coresets and sketches for high dimensional subspace approximation problemsProceedings of the twenty-first annual ACM-SIAM symposium on Discrete algorithms10.5555/1873601.1873654(630-649)Online publication date: 17-Jan-2010
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media