skip to main content
10.1145/1288869.1288872acmconferencesArticle/Chapter ViewAbstractPublication Pagesih-n-mmsecConference Proceedingsconference-collections
Article

Statistically undetectable jpeg steganography: dead ends challenges, and opportunities

Published:20 September 2007Publication History

ABSTRACT

The goal of this paper is to determine the steganographic capacity of JPEG images (the largest payload that can be undetectably embedded) with respect to current best steganalytic methods. Additionally, by testing selected steganographic algorithms we evaluate the influence of specific design elements and principles, such as the choice of the JPEG compressor, matrix embedding, adaptive content-dependent selection channels, and minimal distortion steganography using side information at the sender. From our experiments, we conclude that the average steganographic capacity of grayscale JPEG images with quality factor 70 is approximately 0.05 bits per non-zero AC DCT coefficient.

References

  1. I. Avcibas, M. Kharrazi, N. D. Memon, and B. Sankur. Image steganalysis with binary similarity measures. EURASIP Journal on Applied Signal Processing, 17:2749--2757, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. I. Avcibas, N. D. Memon, and B. Sankur. Steganalysis using image quality metrics. In E. J. Delp and P. W. Wong, editors, Proceeedings of SPIE Electronic Imaging, Security and Watermarking of Multimedia Contents III, volume 4314, pages 523--531, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  3. I. Avcibas, B. Sankur, and N. D. Memon. Image steganalysis with binary similarity measures. In Proceedings of International Conference on Image Processing, volume 3, pages 645--648, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  4. J. Bierbrauer. On Crandall's problem. Personal communication available from http://www.ws.binghamton.edu/fridrich/covcodes.pdf, 1998.Google ScholarGoogle Scholar
  5. C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121--167, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. Cachin. An information-theoretic model for steganography. In D. Aucsmith, editor, Information Hiding, 2nd International Workshop, volume 1525 of Lecture Notes in Computer Science, pages 306--318. Springer-Verlag, New York, 1998.Google ScholarGoogle Scholar
  7. R. Chandramouli, M. Kharrazi, and N. D. Memon. Image steganography and steganalysis: Concepts and practice. In T. Kalker, Y. M. Ro, and I. Cox, editors, Digital Watermarking, 2nd International Workshop, IWDW 2003, Seoul, Korea, October 20-22, 2003, volume 2939 of Lecture Notes in Computer Science, pages 35--49. Springer-Verlag, New York, 2004.Google ScholarGoogle Scholar
  8. J. Eggers, R. Bäuml, and B. Girod. A communications approach to steganography. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, and Watermarking of Multimedia Contents IV, San Jose, CA, January 21-24, 2002, volume 4675, pages 26--37.Google ScholarGoogle ScholarCross RefCross Ref
  9. H. Farid and S. Lyu. Steganalysis using higher-order image statistics. IEEE Transactions on Information Forensics and Security, 1(1):111--119, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. H. Farid and L. Siwei. Detecting hidden messages using higher-order statistics and support vector machines. In F. A. P. Petitcolas, editor, Information Hiding, 5th International Workshop, volume 2578 of Lecture Notes in Computer Science, pages 340--354, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Fridrich. Minimizing the embedding impact in steganography. In J. Dittmann and J. Fridrich, editors, Proceedings ACM Multimedia and Security Workshop, Geneva, Switzerland, September 26-27, 2006, pages 2--10. ACM Press, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Fridrich. Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes. In J. Fridrich, editor, Information Hiding, 6th International Workshop, volume 3200 of Lecture Notes in Computer Science, pages 67--81. Springer-Verlag, New York, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Fridrich, P. Lisonek, and D. Soukal. On steganographic embedding efficiency. In N. Johnson and J. Camenisch, editors, Information Hiding, 8th International Workshop, volume 4437 of Lecture Notes in Computer Science. Springer-Verlag, New York, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Fridrich and T. Filler. Practical methods for minimizing embedding impact in steganography. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA, volume 6505, pages 02--03, January 29-February 1 2007.Google ScholarGoogle ScholarCross RefCross Ref
  15. J. Fridrich, M. Goljan, and D. Soukal. Perturbed quantization steganography using wet paper codes. In J. Dittmann and J. Fridrich, editors, Proceedings ACM Multimedia and Security Workshop, Magdeburg, Germany, September 20-21, 2004, pages 4--15. ACM Press, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Fridrich, M. Goljan, and D. Soukal. Perturbed quantization steganography. ACM Multimedia and Security Journal, 11(2):98--107, 2005.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Fridrich, M. Goljan, and D. Soukal. Wet paper codes with improved embedding efficiency. IEEE Transactions on Information Security and Forensics, 1(1):102--110, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. G. Gul, A. E. Dirik, and I. Avcibas. Steganalytic features for JPEG compression-based perturbed quantization. IEEE Signal Processing Letters, 14(3):205--208, March 2000.Google ScholarGoogle ScholarCross RefCross Ref
  19. S. Hetzl and P. Mutzel. A graph-theoretic approach to steganography. In J. Dittmann et al., editor, Communications and Multimedia Security. 9th IFIP TC-6 TC-11 International Conference, CMS 2005 volume 3677 of Lecture Notes in Computer Science, pages 119--128, Salzburg, Austria, September 19-21 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Ker. A general framework for structural analysis of LSB replacement. In M. Barni, J. Herrera, S. Katzenbeisser, and F. Pérez-González, editors, Proceedings, Information Hiding, 7th International Workshop, volume 3727 of Lecture Notes in Computer Science, pages 296--311. Springer-Verlag, Berlin, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Y. Kim, Z. Duric, and D. Richards. Modified matrix encoding technique for minimal distortion steganography. In N. Johnson and J. Camenisch, editors, Information Hiding, 8th International Workshop, volume 4437 of Lecture Notes in Computer Science. Springer-Verlag, New York, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. K. Lee and A. Westfeld. Generalized category attack - improving histogram-based attack on JPEG LSB embedding. In Information Hiding, 9th International Workshop, Saint Malo, France, June 11-13, 2007, Lecture Notes in Computer Science. Springer-Verlag, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. K. Lee, A. Westfeld, and S. Lee. Category attack for LSB embedding of JPEG images. In Proceedings of the International Workshop on Digital Watermarking, IWDW 2006, Jeju Island, Korea, November 8-10, 2006, volume 4283 of Lecture Notes in Computer Science, pages 35--48. Springer-Verlag, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in nonstandard situations. Machine Learning, 46:191--202, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Lyu and H. Farid. Steganalysis using color wavelet statistics and one-class support vector machines. In E. J. Delp and P. W. Wong, editors, Proceedings of SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VI, volume 5306, pages 35--45, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  26. P. Moulin and Y. Wang. Statistical modeling and steganalysis of DFT-based image steganography. In E. J. Delp and P. W. Wong, editors, Proceedings of SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VIII, volume 6072, pages 607202-1-607202-11, 2006.Google ScholarGoogle Scholar
  27. R. E. Newman, I. S. Moskowitz, LiWu Chang, and M. M. Brahmadesam. A steganographic embedding undetectable by JPEG-compatibility steganalysis. In F. A. P. Petitcolas, editor, Information Hiding, 5th International Workshop, volume 2578 of Lecture Notesin Computer Science, pages 258--277. Springer, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. H. Noda, M. Niimi, and E. Kawaguchi. Application of QIM with dead zone for histogram preserving JPEG steganography. In Proceedings ICIP, Genova, Italy, September 2005.Google ScholarGoogle ScholarCross RefCross Ref
  29. T. Pevný and J. Fridrich. Merging Markov and DCT features for multi-class JPEG steganalysis. In E. J. Delp and P. W. Wong, editors, Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA, January 29-February 1, volume 6505, pages 03--04, January 2007.Google ScholarGoogle ScholarCross RefCross Ref
  30. N. Provos. Defending against statistical steganalysis. In 10th USENIX Security Symposium, Washington, DC, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. P. Sallee. Model-based steganography. In T. Kalker, I. J. Cox, and Y. M. Ro, editors, Digital Watermarking, 2nd International Workshop, IWDW 2003, Seoul, Korea, October 20-20, 2003, volume 2939 of Lecture Notes in Computer Science, pages 154--167. Springer-Verlag, New York, 2004.Google ScholarGoogle Scholar
  32. P. Sallee. Model-based methods for steganography and steganalysis. International Journal of Image Graphics, 5(1):167--190, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  33. Y. Q. Shi, C. Chen, and W. Chen. A Markov process based approach to effective attacking JPEG steganography. In N. Johnson and J. Camenisch, editors, Information Hiding, 8th International Workshop, volume 4437 of LNCS. Springer-Verlag, New York, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. K. Solanki, A. Sarkar, and B. S. Manjunath. YASS: Yet another steganographic scheme that resists blind steganalysis. In T. Furon et al., editor, Information Hiding, 9th International Workshop, Saint Malo, France, June 11-13, 2007, to appear in Lecture Notes in Computer Science. Springer-Verlag, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. K. Solanki, K. Sullivan, U. Madhow, B. S. Manjunath,and S. Chandrasekaran. Provably secure steganography: Achieving zero K-L divergence using statistical restoration. In Proceedings ICIP, Atlanta, GA, October 2006.Google ScholarGoogle ScholarCross RefCross Ref
  36. K. Sullivan, U. Madhow, B. S. Manjunath, and S. Chandrasekaran. Steganalysis for Markov cover data with applications to images. IEEE Transactions on Information Security and Forensics, 1(2):275--287, June 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Westfeld. High capacity despite better steganalysis (F5 - a steganographic algorithm). In I. S. Moskowitz, editor, Information Hiding, 4th International Workshop, volume 2137 of Lecture Notes in Computer Science, pages 289--302. Springer-Verlag, New York, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. Westfeld and A. Pfitzmann. Attacks on steganographic systems. In A.Pfitzmann, editor, Information Hiding, 3rd International Workshop, volume 1768 of Lecture Notes in Computer Science, pages 61--75. Springer-Verlag, New York, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. G. Xuan, Y. Q. Shi, J. Gao, D. Zou, C. Yang, Z. Zhang, P. Chai, C. Chen, and W. Chen. Steganalysis based on multiple features formed by statistical moments of wavelet characteristic function. In M. Barni, J. Herrera, S. Katzenbeisser, and F. Pérez-González, editors, Information Hiding. 7th International Workshop, volume 3727 of Lecture Notes in Computer Science, pages 262--277, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. X. Yu, Y. Wang, and T. Tan. On estimation of secret message length in JSteg-like steganography. In Proceedings, International Conference on Pattern Recognition, Cambridge, UK, August 23-26, 2004, volume 4, pages 673--676. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. T. Zhang and X. Ping. A fast and effective steganalytic technique against JSteg-like algorithms. In Proceedings, Symposium on Applied Computing, Melbourne, FL, pages 307--311, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Statistically undetectable jpeg steganography: dead ends challenges, and opportunities

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        MM&Sec '07: Proceedings of the 9th workshop on Multimedia & security
        September 2007
        260 pages
        ISBN:9781595938572
        DOI:10.1145/1288869

        Copyright © 2007 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 September 2007

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        Overall Acceptance Rate128of318submissions,40%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader