skip to main content
research-article

Characterization of moments and autocorrelation in MAPs

Published: 01 September 2007 Publication History

Abstract

Markovian Arrival Processes (MAPs) [9] are a general class of point processes which admits, hyper-exponential, Erlang, and Markov Modulated Poisson Processes (MMPPs) as special cases. MAPs can be easily integrated within queueing models. This makes MAPs useful for evaluating the impact of non-Poisson workloads in networking and for quantifying the performance of multi-tiered e-commerce applications and disk drives [8, 10].

References

[1]
A. T. Andersen, B. F. Nielsen. A Markovian approach for Modeling Packet traffic with Long-Range Dependence. IEEE JSAC, 16(5), 719--732, 1998.
[2]
P. Buchholz, A. Panchenko. A Two-Step EM Algorithm for MAP Fitting. LNCS 3280, 217--227, 2004, Springer.
[3]
A. Heindl, K. Mitchell, A. van de Liefvoort. Correlation bounds for second-order MAPs with application to queueing network decomposition. PEVA, 63(6), 2006.
[4]
F. E. Hohn. Elementary Linear Algebra. Dover, 1973.
[5]
G. Horvath, P. Buchholz, M. Telek. A MAP fitting approach with independent approximation of the inter-arrival time distribution and the lag correlation, in Proc. of QEST 2005, 124--133, 2005, IEEE Press.
[6]
L. A. Kulkarni, S. Li. Transient behaviour of queueing systems with correlated traffic. PEVA 27, 1996.
[7]
R. M. M. Leao, E. de Souza e Silva, S. C. de Lucena. A Set of Tools for Traffic Modeling, Analysis and Experimentation LNCS 1786, 40--55, 2000, Springer.
[8]
N. Mi, Q. Zhang, A. Riska, E. Smirni, E. Riedel Performance Impacts of Autocorrelation Flows in Systems. To appear in Performance 2007.
[9]
M. F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker, 1989.
[10]
A. Riska, E. Riedel. Disk Drive Level Workload Characterization. Proc. USENIX 2006, 97--102, 2006.
[11]
M. Telek, G. Horwath A minimal representation of Markov arrival processes and a moments matching method. To appear in Performance 2007.

Cited By

View all
  • (2023)Fitting with matrix exponential mixtures generated by discrete probabilistic scalingACM SIGMETRICS Performance Evaluation Review10.1145/3626570.362657751:2(15-17)Online publication date: 28-Sep-2023
  • (2010)Sizing multi-tier systems with temporal dependence: benchmarks and analytic modelsJournal of Internet Services and Applications10.1007/s13174-010-0012-91:2(117-134)Online publication date: 21-Sep-2010
  • (2008)Versatile models of systems using map queueing networks2008 IEEE International Symposium on Parallel and Distributed Processing10.1109/IPDPS.2008.4536387(1-5)Online publication date: Apr-2008

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGMETRICS Performance Evaluation Review
ACM SIGMETRICS Performance Evaluation Review  Volume 35, Issue 2
September 2007
50 pages
ISSN:0163-5999
DOI:10.1145/1330555
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 September 2007
Published in SIGMETRICS Volume 35, Issue 2

Check for updates

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Fitting with matrix exponential mixtures generated by discrete probabilistic scalingACM SIGMETRICS Performance Evaluation Review10.1145/3626570.362657751:2(15-17)Online publication date: 28-Sep-2023
  • (2010)Sizing multi-tier systems with temporal dependence: benchmarks and analytic modelsJournal of Internet Services and Applications10.1007/s13174-010-0012-91:2(117-134)Online publication date: 21-Sep-2010
  • (2008)Versatile models of systems using map queueing networks2008 IEEE International Symposium on Parallel and Distributed Processing10.1109/IPDPS.2008.4536387(1-5)Online publication date: Apr-2008

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media