skip to main content
10.1145/1341811.1341831acmotherconferencesArticle/Chapter ViewAbstractPublication Pagesmardi-grasConference Proceedingsconference-collections
research-article

A case study for petascale applications in astrophysics: simulating gamma-ray bursts

Published: 29 January 2008 Publication History

Abstract

Petascale computing will allow astrophysicists to investigate astrophysical objects, systems, and events that cannot be studied by current observational means and that were previously excluded from computational study by sheer lack of CPU power and appropriate codes. Here we present a pragmatic case study, focussing on the simulation of gamma-ray bursts as a science driver for petascale computing. We estimate the computational requirements for such simulations and delineate in what way petascale and peta-grid computing can be utilized in this context.

References

[1]
M. Alcubierre, B. Brügmann, P. Diener, M. Koppitz, D. Pollney, E. Seidel, and R. Takahashi. Gauge conditions for long-term numerical black hole evolutions without excision. Phys. Rev. D, 67:084023, 2003.
[2]
M. Alcubierre, B. Brügmann, T. Dramlitsch, J. A. Font, P. Papadopoulos, E. Seidel, N. Stergioulas, and R. Takahashi. Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments. Phys. Rev. D, 62:044034, 2000.
[3]
G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M. Ripeanu, E. Seidel, and B. Toonen. Supporting efficient execution in heterogeneous distributed computing environments with cactus and globus. In Proceedings of Supercomputing 2001, Denver, USA, 2001. http://www.cactuscode.org/Articles/Cactus_Allen01e.pre.pdf.
[4]
G. Allen and E. Seidel. The Grid: Blueprint for a New Computing Infrastructure (2nd Edition), chapter Collaborative Science: Astrophysics Requirements and Experiences, pages 201--213. Morgan Kaufmann, 2004.
[5]
L. Baiotti, I. Hawke, P. J. Montero, F. Löffler, L. Rezzolla, N. Stergioulas, J. A. Font, and E. Seidel. Three-dimensional relativistic simulations of rotating neutron star collapse to a Kerr black hole. Phys. Rev. D, 71:024035, 2005.
[6]
M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys., 53:484--512, 1984.
[7]
C. Bernes. A Monte Carlo approach to non-LTE radiative transfer problems. Astron. Astrophys., 73:67, 1979.
[8]
R. Bondarescu, G. Allen, G. Daues, I. Kelley, M. Russell, E. Seidel, J. Shalf, and M. Tobias. The astrophysics simulation collaboratory portal: a framework for effective distributed research. Future Generation Computer Systems, 2003. Accepted.
[9]
R. Bondarescu, G. Allen, G. Daues, I. Kelley, M. Russell, E. Seidel, J. Shalf, and M. Tobias. The Astrophysics Simulation Collaboratory portal: a framework for effective distributed research. Future Generation Computer Systems, 21:259--270, 2005.
[10]
S. W. Bruenn, C. J. Dirk, A. Mezzacappa, J. C. Hayes, J. M. Blondin, W. R. Hix, and O. E. B. Messer. Modeling core collapse supernovae in 2 and 3 dimensions with spectral neutrino transport. arXiv:0709.0537 {astro-ph}, 2007.
[11]
Cactus Computational Toolkit home page, http://www.cactuscode.org/.
[12]
Mesh Refinement with Carpet, http://www.carpetcode.org/.
[13]
Spacetime evolution with CCATIE, http://numrel.aei.mpg.de/Research/codes.html.
[14]
T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and J. Shalf. The Cactus framework and toolkit: Design and applications. In Vector and Parallel Processing - VECPAR'2002, 5th International Conference, Lecture Notes in Computer Science, Berlin, 2003. Springer.
[15]
P. Mészáros. Gamma-ray bursts. Reports of Progress in Physics, 69:2259, 2006.
[16]
MPI: Message Passing Interface Forum, http://www.mpi-forum.org/.
[17]
L. Oliker, A. Canning, J. Carter, C. Iancu, M. Lijewski, S. Kamil, J. Shalf, H. Shan, E. Strohmaier, S. Ethier, and T. Goodale. Scientific Application Performance on Candidate PetaScale Platforms. In International Parallel and Distributed Processing Symposium (IPDPS), Long Beach, Ca., March 24--30 2007. Winner Best Paper.
[18]
OpenMP: Simple, Portable, Scalable SMP Programming, http://www.openmp.org/.
[19]
C. D. Ott. Stellar Iron Core Collapse in 3+1 General Relativity and The Gravitational Wave Signature of Core-Collapse Supernovae. PhD thesis, Universität Potsdam, Potsdam, Germany, 2006.
[20]
C. D. Ott, H. Dimmelmeier, A. Marek, H. T. Janka, I. Hawke, B. Zink, and E. Schnetter. 3D Collapse of Rotating Stellar Iron Cores in General Relativity including Deleptonization and a Nuclear Equation of State. Phys. Rev. Lett., 98:261101, 2007.
[21]
M. Ripeanu, A. Iamnitchi, and I. Foster. Performance predictions for a numerical relativity package in grid environment. In International Journal of High Performance Computing Applications, volume 15, pages 375--387. Sage Publications, 2001. http://people.cs.uchicago.edu/~matei/PAPERS/.
[22]
E. Schnetter, S. H. Hawley, and I. Hawke. Evolutions in 3D numerical relativity using fixed mesh refinement. Class. Quantum Grav., 21:1465--1488, 2004.
[23]
E. Schnetter, C. D. Ott, G. Allen, P. Diener, T. Goodale, T. Radke, E. Seidel, and J. Shalf. Cactus Framework: Black holes to gamma ray bursts. In D. A. Bader, editor, Petascale Computing: Algorithms and Applications, chapter 24. Chapman & Hall/CRC Computational Science Series, 2007.
[24]
S. Setiawan, M. Ruffert, and H.-T. Janka. Three-dimensional simulations of non-stationary accretion by remnant black holes of compact object mergers. Astron. Astrophys., 458:553--567, 2006.
[25]
J. van Meter, J. G. Baker, M. Koppitz, and D.-I. Choi. How to move a black hole without excision: gauge conditions for the numerical evolution of a moving puncture. Phys. Rev. D, 73:124011, 2006.
[26]
Whisky, EU Network GR Hydrodynamics Code, http://www.whiskycode.org/.
[27]
S. E. Woosley and J. S. Bloom. The Supernova Gamma-Ray Burst Connection. Ann. Rev. Astron. Astrophys., 44:507, 2006.
[28]
B. Zink. A general relativistic evolution code on cuda architectures. (In preparation), 2008.
[29]
B. Zink, E. Schnetter, and M. Tiglio. Multi-patch methods in general relativistic astrophysics -- i. hydrodynamical flows on fixed backgrounds. arXiv:0712.0353, 2007.

Cited By

View all
  • (2013)Preliminary experiences with the uintah framework on Intel Xeon Phi and stampedeProceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery10.1145/2484762.2484779(1-8)Online publication date: 22-Jul-2013
  • (2012)Radiation modeling using the Uintah heterogeneous CPU/GPU runtime systemProceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond10.1145/2335755.2335791(1-8)Online publication date: 16-Jul-2012
  • (2011)Using hybrid parallelism to improve memory use in the Uintah frameworkProceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery10.1145/2016741.2016767(1-8)Online publication date: 18-Jul-2011
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
MG '08: Proceedings of the 15th ACM Mardi Gras conference: From lightweight mash-ups to lambda grids: Understanding the spectrum of distributed computing requirements, applications, tools, infrastructures, interoperability, and the incremental adoption of key capabilities
January 2008
178 pages
ISBN:9781595938350
DOI:10.1145/1341811
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

  • National e-Science Institute (Edinburgh, UK)
  • Louisiana State University (USA)

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 January 2008

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Funding Sources

Conference

Mardi Gras'08
Sponsor:
Mardi Gras'08: 15th Mardi Gras Conference on Distributed Applications
January 29 - February 3, 2008
Louisiana, Baton Rouge, USA

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)1
Reflects downloads up to 15 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2013)Preliminary experiences with the uintah framework on Intel Xeon Phi and stampedeProceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery10.1145/2484762.2484779(1-8)Online publication date: 22-Jul-2013
  • (2012)Radiation modeling using the Uintah heterogeneous CPU/GPU runtime systemProceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond10.1145/2335755.2335791(1-8)Online publication date: 16-Jul-2012
  • (2011)Using hybrid parallelism to improve memory use in the Uintah frameworkProceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery10.1145/2016741.2016767(1-8)Online publication date: 18-Jul-2011
  • (2008)Multi-physics coupling of Einstein and hydrodynamics evolutionProceedings of the 2008 compFrame/HPC-GECO workshop on Component based high performance10.1145/1456190.1456196(1-9)Online publication date: 16-Oct-2008

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media