skip to main content
research-article

Data-driven enhancement of facial attractiveness

Published:01 August 2008Publication History
Skip Abstract Section

Abstract

When human raters are presented with a collection of shapes and asked to rank them according to their aesthetic appeal, the results often indicate that there is a statistical consensus among the raters. Yet it might be difficult to define a succinct set of rules that capture the aesthetic preferences of the raters. In this work, we explore a data-driven approach to aesthetic enhancement of such shapes. Specifically, we focus on the challenging problem of enhancing the aesthetic appeal (or the attractiveness) of human faces in frontal photographs (portraits), while maintaining close similarity with the original.

The key component in our approach is an automatic facial attractiveness engine trained on datasets of faces with accompanying facial attractiveness ratings collected from groups of human raters. Given a new face, we extract a set of distances between a variety of facial feature locations, which define a point in a high-dimensional "face space". We then search the face space for a nearby point with a higher predicted attractiveness rating. Once such a point is found, the corresponding facial distances are embedded in the plane and serve as a target to define a 2D warp field which maps the original facial features to their adjusted locations. The effectiveness of our technique was experimentally validated by independent rating experiments, which indicate that it is indeed capable of increasing the facial attractiveness of most portraits that we have experimented with.

Skip Supplemental Material Section

Supplemental Material

33.flv

flv

91.6 MB

a38-leyvand.mov

mov

20.2 MB

References

  1. Alley, T. R., and Cunningham, M. R. 1991. Averaged faces are attractive, but very attractive faces are not average. Psychological Science 2, 123--125.Google ScholarGoogle ScholarCross RefCross Ref
  2. Beier, T., and Neely, S. 1992. Feature-based image metamorphosis. In Proc. ACM SIGGRAPH 92, ACM Press, 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3D faces. In Proc. ACM SIGGRAPH 99, ACM Press, 187--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Blanz, V., 2003. Manipulation of facial attractiveness. {web page} http://www.mpi-inf.mpg.de/~blanz/data/attractiveness/.Google ScholarGoogle Scholar
  5. Bradski, G. 2000. The OpenCV library. Dr. Dobbs Journal 25, 11 (Nov.), 120, 122--125.Google ScholarGoogle Scholar
  6. Cohen, J. D. 1997. Drawing graphs to convey proximity: an incremental arrangement method. ACM Trans. Comput.-Hum. Interact. 4, 3, 197--229. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. 1995. Active shape models --- their training and their applications. Comput. Vis. Image Underst. 61, 1 (Jan.), 38--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cunningham, M. R., Roberts, A. R., Wu, C.-H., Barbee, A. P., and Druen, P. B. 1995. Their ideas of beauty are, on the whole, the same as ours: Consistency and variability in the cross-cultural perception of female attractiveness. Journal of Personality and Social Psychology 68, 1, 261--279.Google ScholarGoogle ScholarCross RefCross Ref
  9. Eisenthal, Y., Dror, G., and Ruppin, E. 2006. Facial attractiveness: Beauty and the machine. Neural Computation 18, 1, 119--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Guenter, B., Grimm, C., Wood, D., Malvar, H., and Pighin, F. 1998. Making faces. In Proc. ACM SIGGRAPH 98, ACM Press, 55--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Joachims, T. 1999. Making large-scale SVM learning practical. In Advances in kernel methods: support vector learning. MIT Press, Cambridge, MA, USA, 169--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jones, D. 1996. Physical Attractiveness and the Theory of Sexual Selection: Results from Five Populations. University of Michigan Press, Ann Arbor, Michigan.Google ScholarGoogle Scholar
  13. Kagian, A., Dror, G., Leyvand, T., Cohen-Or, D., and Ruppin, E. 2007. A humanlike predictor of facial attractiveness. In Advances in Neural Information Processing Systems 19, B. Schölkopf, J. Platt, and T. Hoffman, Eds. MIT Press.Google ScholarGoogle Scholar
  14. Langlois, J. H., Roggman, L. A., Casey, R. J., M. Ritter, J., Rieser-Danner, L. A., and Jenkins, V. Y. 1987. Infant preferences for attractive faces: Rudiments of a stereotype? Developmental Psychology 23, 5, 363--369.Google ScholarGoogle ScholarCross RefCross Ref
  15. Lanitis, A., Taylor, C. J., and Cootes, T. F. 2002. Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24, 4, 442--455. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lee, Y., Terzopoulos, D., and Waters, K. 1995. Realistic modeling for facial animation. In Proc. ACM SIGGRAPH 95, ACM Press, 55--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lee, S.-Y., Wolberg, G., Chwa, K.-Y., and Shin, S. Y. 1996. Image metamorphosis with scattered feature constraints. IEEE Trans. Visualization and Computer Graphics 2, 4 (Dec.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lee, S.-Y., Wolberg, G., and Shin, S. Y. 1997. Scattered data interpolation with multilevel B-splines. IEEE Trans. Visualization and Computer Graphics 3, 3 (July--Sept.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Levenberg, K. 1944. A method for the solution of certain problems in least squares. Quart. Appl. Math., 2, 164--168.Google ScholarGoogle ScholarCross RefCross Ref
  20. Lourakis, M., 2004. levmar: Levenberg-Marquardt non-linear least squares algorithms in C/C++. {web page} http://www.ics.forth.gr/~lourakis/levmar/.Google ScholarGoogle Scholar
  21. Marquardt, D. 1963. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math., 11, 431--441.Google ScholarGoogle ScholarCross RefCross Ref
  22. Martinez, A. M., and Benavente, R. 1998. The AR face database. CVC Technical Report 24.Google ScholarGoogle Scholar
  23. O'Toole, A. J., Price, T., Vetter, T., Bartlett, J. C., and Blanz, V. 1999. 3D shape and 2D surface textures of human faces: the role of "averages" in attractiveness and age. Image Vision Comput. 18, 1, 9--19.Google ScholarGoogle ScholarCross RefCross Ref
  24. Parke, F. I., and Waters, K. 1996. Computer Facial Animation. A K Peters, Wellesley, Massachusetts. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. ACM Trans. Graph. 22, 3, 313--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Perrett, D. I., May, K. A., and Yoshikawa, S. 1994. Facial shape and judgements of female attractiveness. Nature 368, 239--242.Google ScholarGoogle ScholarCross RefCross Ref
  27. Perrett, D. I., Burt, D. M., Penton-Voak, I. S., Lee, K. J., Rowland, D. A., and Edwards, R. 1999. Symmetry and human facial attractiveness. Evolution and Human Behavior 20, 295--307.Google ScholarGoogle ScholarCross RefCross Ref
  28. Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., and Salesin, D. H. 1998. Synthesizing realistic facial expressions from photographs. In Proc. ACM SIGGRAPH 98, 75--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. 1992. Numerical Recipes: The Art of Scientific Computing, 2nd ed. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sammon, J. W. 1969. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers C-18, 5, 401--409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Slater, A., Der Schulenberg, C. V., Brown, E., Butter-worth, G., Badenoch, M., and Parsons, S. 1998. Newborn infants prefer attractive faces. Infant Behavior and Development, 345--354.Google ScholarGoogle Scholar
  32. Vapnik, V. 1995. The nature of statistical learning theory. Springer, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yang, M.-H., Kriegman, D., and Ahuja, N. 2002. Detecting faces in images: A survey. IEEE Trans. PAMI 24, 1, 34--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zhao, W., Chellappa, R., Phillips, P. J., and Rosenfeld, A. 2003. Face recognition: A literature survey. ACM Comput. Surv. 35, 4, 399--458. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Zhou, Y., Gu, L., and Zhang, H.-J. 2003. Bayesian tangent shape model: Estimating shape and pose parameters via bayesian inference. In Proc. CVPR 2003, 109--118. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Data-driven enhancement of facial attractiveness

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader