skip to main content
10.1145/1399504.1360646acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Fast viscoelastic behavior with thin features

Published: 01 August 2008 Publication History

Abstract

We introduce a method for efficiently animating a wide range of deformable materials. We combine a high resolution surface mesh with a tetrahedral finite element simulator that makes use of frequent re-meshing. This combination allows for fast and detailed simulations of complex elastic and plastic behavior. We significantly expand the range of physical parameters that can be simulated with a single technique, and the results are free from common artifacts such as volume-loss, smoothing, popping, and the absence of thin features like strands and sheets. Our decision to couple a high resolution surface with low-resolution physics leads to efficient simulation and detailed surface features, and our approach to creating the tetrahedral mesh leads to an order-of-magnitude speedup over previous techniques in the time spent re-meshing. We compute masses, collisions, and surface tension forces on the scale of the fine mesh, which helps avoid visual artifacts due to the differing mesh resolutions. The result is a method that can simulate a large array of different material behaviors with high resolution features in a short amount of time.

Supplementary Material

MOV File (a47-wojtan.mov)

References

[1]
Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 3, 617--625.
[2]
Bargteil, A. W., Goktekin, T. G., O'Brien, J. F., and Strain, J. A. 2006. A semi-Lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1, 19--38.
[3]
Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3, 16:1--16:8.
[4]
Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3, 100:1--100:7.
[5]
Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Computer Graphics Forum 26, 3, 339--347.
[6]
Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3, 594--603.
[7]
Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. Symposium on Computer Animation, 28--36.
[8]
Brochu, T. 2006. Fluid Animation with Explicit Surface Meshes and Boundary-Only Dynamics. Master's thesis, University of British Columbia.
[9]
Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 3, 586--593.
[10]
Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. A multiresolution framework for dynamic deformations. In Proc. Symposium on Computer Animation, 41--47.
[11]
Chentanez, N., Feldman, B. E., Labelle, F., O'Brien, J. F., and Shewchuk, J. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proc. Symposium on Computer Animation, 219--228.
[12]
Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In Proc. Symposium on Computer Animation, 219--228.
[13]
Desbrun, M., Meyer, M., Schröder, P., and Barr, A. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. Proc. SIGGRAPH, 317--324.
[14]
Enright, D., Losasso, F., and Fedkiw, R. 2005. A fast and accurate semi-Lagrangian particle level set method. Computers and Structures 83, 479--490.
[15]
Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic free-form deformations for animation synthesis. IEEE TVCG 3, 3, 201--214.
[16]
Galoppo, N., Otaduy, M., Mecklenburg, P., Gross, M., and Lin, M. 2006. Fast simulation of deformable models in contact using dynamic deformation textures. In Proc. Symp. on Computer Animation, 73--82.
[17]
Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463--468.
[18]
Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. Symposium on Computer Animation, 131--140.
[19]
Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26, 3, 13:1--13:6.
[20]
Jiao, X. 2007. Face offsetting: A unified approach for explicit moving interfaces. J. Comput. Phys. 220, 2, 612--625.
[21]
Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified Lagrangian approach to solid-fluid animation. In the Proceedings of Eurographics Symposium on Point-based Graphics, 125--133.
[22]
Labelle, F., and Shewchuk, J. R. 2007. Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph. 26, 3, 57:1--57:10.
[23]
Lien, S., and Kajiya., J. T. 1984. A symbolic method for calculating the integral properties of arbitrary nonconvex polyhedra. IEEE CG&A 4, 10 (October), 35--41.
[24]
Lindstrom, P., and Turk, G. 1999. Evaluation of memoryless simplification. IEEE TVCG 5, 2, 98--115.
[25]
Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812--819.
[26]
Molino, N., Bridson, R., Teran, J., And Fedkiw, R. 2003. A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In IMR, 103--114.
[27]
Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 3, 385--392.
[28]
Mullen, P., McKenzie, A., Tong, Y., and Desbrun, M. 2007. A variational approach to eulerian geometry processing. ACM Trans. Graph. 26, 3, 66.
[29]
Müller, M., and Gross, M. 2004. Interactive virtual materials. In the Proccedings of Graphics Interface, 239--246.
[30]
Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proc. Symposium on Computer Animation, 49--54.
[31]
Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proc. Symposium on Computer Animation, 141--151.
[32]
Müller, M., Teschner, M., and Gross, M. 2004. Physically-based simulation of objects represented by surface meshes. In Computer Graphics International, 26--33.
[33]
Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. 24, 3, 471--478.
[34]
Nooruddin, F. S., and Turk, G. 2003. Simplification and repair of polygonal models using volumetric techniques. IEEE Transactions on Visualization and Computer Graphics 9, 2, 191--205.
[35]
O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In the Proceedings of ACM SIGGRAPH 99, 137--146.
[36]
O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291--294.
[37]
Pauly, M., Keiser, R., Adams, B., Dutré;, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3, 957--964.
[38]
Reynolds, C. W., 1992. Adaptive polyhedral resampling for vertex flow animation, unpublished. http://www.red3d.com/cwr/papers/1992/df.html.
[39]
Rivers, A. R., and James, D. L. 2007. Fastlsm: fast lattice shape matching for robust real-time deformation. ACM Trans. Graph. 26, 3, 82:1--82:6.
[40]
Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph. 20, 4, 151--160.
[41]
Shewchuk, J. R. 2002. What is a good linear element? interpolation, conditioning, and quality measures. In 11 th Int. Meshing Roundtable, 115--126.
[42]
Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of deformable tetrahedralized objects. In Proc. Symposium on Computer Animation, 73--80.
[43]
Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Proc. Symposium on Computer Animation, 81--90.
[44]
Terzopoulos, D., and Fleischer, K. 1988. Deformable models. The Visual Computer 4, 306--331.
[45]
Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In the Proceedings of ACM SIGGRAPH 1988, 269--278.
[46]
Terzopoulos, D., Platt, J., and Fleischer, K. 1989. Heating and melting deformable models (from goop to glop). In the Proceedings of Graphics Interface, 219--226.

Cited By

View all
  • (2025)Implicit Bonded Discrete Element Method with Manifold OptimizationACM Transactions on Graphics10.1145/371185244:1(1-17)Online publication date: 28-Jan-2025
  • (2024)Gram-Schmidt voxel constraints for real-time destructible soft bodiesProceedings of the 17th ACM SIGGRAPH Conference on Motion, Interaction, and Games10.1145/3677388.3696322(1-10)Online publication date: 21-Nov-2024
  • (2024)A Dynamic Duo of Finite Elements and Material PointsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657449(1-11)Online publication date: 13-Jul-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH '08: ACM SIGGRAPH 2008 papers
August 2008
887 pages
ISBN:9781450301121
DOI:10.1145/1399504
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 August 2008

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. computational fluid dynamics
  2. deformable models
  3. explicit surface
  4. finite element method
  5. free-form deformation
  6. viscoelastic behavior

Qualifiers

  • Research-article

Funding Sources

Conference

SIGGRAPH '08
Sponsor:

Acceptance Rates

SIGGRAPH '08 Paper Acceptance Rate 90 of 518 submissions, 17%;
Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)13
  • Downloads (Last 6 weeks)1
Reflects downloads up to 22 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Implicit Bonded Discrete Element Method with Manifold OptimizationACM Transactions on Graphics10.1145/371185244:1(1-17)Online publication date: 28-Jan-2025
  • (2024)Gram-Schmidt voxel constraints for real-time destructible soft bodiesProceedings of the 17th ACM SIGGRAPH Conference on Motion, Interaction, and Games10.1145/3677388.3696322(1-10)Online publication date: 21-Nov-2024
  • (2024)A Dynamic Duo of Finite Elements and Material PointsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657449(1-11)Online publication date: 13-Jul-2024
  • (2022)Energetically consistent inelasticity for optimization time integrationACM Transactions on Graphics10.1145/3528223.353007241:4(1-16)Online publication date: 22-Jul-2022
  • (2022)Coupling 3D Liquid Simulation with 2D Wave Propagation for Large Scale Water Surface Animation Using the Equivalent Sources MethodComputer Graphics Forum10.1111/cgf.1447841:2(343-353)Online publication date: 24-May-2022
  • (2021)A unified second-order accurate in time MPM formulation for simulating viscoelastic liquids with phase changeACM Transactions on Graphics10.1145/3450626.345982040:4(1-18)Online publication date: 19-Jul-2021
  • (2021)Mechanics-aware deformation of yarn pattern geometryACM Transactions on Graphics10.1145/3450626.345981640:4(1-11)Online publication date: 19-Jul-2021
  • (2020)An extended cut-cell method for sub-grid liquids tracking with surface tensionACM Transactions on Graphics10.1145/3414685.341785939:6(1-13)Online publication date: 27-Nov-2020
  • (2020)Phong deformationACM Transactions on Graphics10.1145/3386569.339237139:4(56:1-56:9)Online publication date: 12-Aug-2020
  • (2019)Approximate Data Driven Parallel Shape Matching for Soft Body Physics Simulations2019 International Artificial Intelligence and Data Processing Symposium (IDAP)10.1109/IDAP.2019.8875976(1-5)Online publication date: Sep-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media