skip to main content
10.1145/1364901.1364915acmconferencesArticle/Chapter ViewAbstractPublication PagesspmConference Proceedingsconference-collections
research-article

Interactive physically-based shape editing

Published: 02 June 2008 Publication History

Abstract

We present an alternative approach to standard geometric shape editing using physically-based simulation. With our technique, the user can deform complex objects in real-time. The basis of our method is formed by a fast and accurate finite element implementation of an elasto-plastic material model, specifically designed for interactive shape manipulation. Using quadratic shape functions, we reduce approximation errors inherent to methods based on linear finite elements. The physical simulation uses a volume mesh comprised of quadratic tetrahedra, which are constructed from a coarser approximation of the detailed surface. In order to guarantee stability and real-time frame rates during the simulation, we cast the elasto-plastic problem into a linear formulation. For this purpose, we present a corotational formulation for quadratic finite elements. We demonstrate the versatility of our approach in interactive manipulation sessions and show that our animation system can be coupled with further physics-based animations like, e.g. fluids and cloth, in a bi-directional way.

References

[1]
Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-Rigid-As-Possible Shape Interpolation. In Proc. ACM SIGGRAPH, 157--164.
[2]
Alexa, M. 2003. Differential coordinates for mesh morphing and deformation. The Visual Computer 19, 2, 105--114.
[3]
Auricchio, F., and Da Veiga, L. B. 2003. On a new integration scheme for von-Mises plasticity with linear hardening. International Journal for Numerical Methods in Engineering 56, 10, 1375--1396.
[4]
Bargteil, A. W., Wojtàn, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3, article no. 16.
[5]
Botsch, M., and Kobbelt, L. 2004. An intuitive framework for real-time freeform modeling. ACM Trans. Graph. 23, 3, 630--634.
[6]
Botsch, M., and Sorkine, O. 2008. On Linear Variational Surface Deformation Methods. IEEE Trans. Vis. Graph. 14, 1, 213--230.
[7]
Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive Space Deformations Based on Rigid Cells. In Proc. Eurographics.
[8]
Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 3, 586--593.
[9]
Dewaele, G., and Cani, M.-P. 2003. Interactive Global and Local Deformations for Virtual Clay. In Proc. Pacific Graphics.
[10]
Hauth, M., and Strasser, W. 2004. Corotational Simulation of Deformable Solids. In Proc. WSCG, 137--145.
[11]
Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bad, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3, 1126--1134.
[12]
Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. ACM Symp. Comp. Animation (SCA), 131--140.
[13]
James, D. L., and Pai, D. K. 1999. ArtDefo: Accurate real time deformable objects. In Proc. ACM SIGGRAPH, 65--72.
[14]
Kilian, M., Mitra, N. J., and Pottmann, H. 2007. Geometric Modeling in Shape Space. ACM Trans. Graph. 26, 3, article no. 64.
[15]
Kobbelt, L., Campagna, S., Vorsatz, J., and Seidel, H.-P. 1998. Interactive Multi-Resolution Modeling on Arbitrary Meshes. Computer Graphics (Proc. ACM SIGGRAPH) 32, 105--114.
[16]
Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 2005. Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24, 3, 479--187.
[17]
Lipman, Y., Cohen-Or, D., Gal, R., and Levin, D. 2007. Volume and shape preservation via moving frame manipulation. ACM Trans. Graph. 26, 1, article no. 5.
[18]
Mezger, J., and Strasser, W. 2006. Interactive Soft Object Simulation with Quadratic Finite Elements. In Articulated Motion and Deformable Objects (AMDO), vol. 4069 of LNCS, 434--443.
[19]
Müller, M., and Gross, M. 2004. Interactive Virtual Materials. In Proc. Graphics Interface, 239--246.
[20]
O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291--294.
[21]
Picinbono, G., Delingette, H., and Ayache, N. 2000. Real-Time Large Displacement Elasticity for Surgery Simulation: Non-linear Tensor-Mass Model. In MICCAI, 643--652.
[22]
Rappaport, A., Sheffer, A., and Bercovier, M. 1996. Volume-preserving free-form solids. IEEE Trans. Vis. Comp. Graph. 2, 1, 19--27.
[23]
Roth, S. H. M., Gross, M. H., Turello, S., and Carls, F. R. 1998. A Bernstein-Bézier Based Approach to Soft Tissue Simulation. CGF 17, 3, 285--294.
[24]
Sheffer, A., and Kraevoy, V. 2004. Pyramid Coordinates for Morphing and Deformation. In Proc. 3D Data Processing, Visualization, and Transmission, 68--75.
[25]
Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rossl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Symp. Geometry processing (SGP), 179--188.
[26]
Steinemann, D., Otaduy, M. A., and Gross, M. 2006. Fast arbitrary splitting of deforming objects. In ACM Symp. Comp. Animation (SCA), 63--72.
[27]
Stroud, A. H. 1971. Approximate Calculation of Multiple Integrals. Prentice-Hall, Inc.
[28]
Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. Computer Graphics (Proc. ACM SIGGRAPH) 22, 4, 269--278.
[29]
Von Funck, W., Theisel, H., and Seidel, H.-P. 2006. Vector field based shape deformations. ACM Trans. Graph. 25, 3, 1118--1125.
[30]
Von Funck, W., Theisel, H., and Seidel, H.-P. 2007. Explicit Control of Vector Field Based Shape Deformations. In Proc. of Pacific Graphics, 291--300.
[31]
Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph. 23, 3, 644--651.
[32]
Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. 2005. Large mesh deformation using the volumetric graph Laplacian. ACM Trans. Graph. 24, 3, 496--503.
[33]
Zienkiewicz, O. C., and Taylor, R. L. 2000. The Finite Element Method, fifth ed., vol. 1 and 2. Butterworth-Heinemann.
[34]
Zorin, D., Schröder, P., and Sweldens, W. 1997. Interactive multiresolution mesh editing. In Proc. ACM SIGGRAPH, 256--268.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SPM '08: Proceedings of the 2008 ACM symposium on Solid and physical modeling
June 2008
423 pages
ISBN:9781605581064
DOI:10.1145/1364901
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 June 2008

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. mesh deformation
  2. plasticity
  3. quadratic finite elements

Qualifiers

  • Research-article

Funding Sources

Conference

SPM08
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)10
  • Downloads (Last 6 weeks)2
Reflects downloads up to 18 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)DiffSound: Differentiable Modal Sound Rendering and Inverse Rendering for Diverse Inference TasksACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657493(1-12)Online publication date: 13-Jul-2024
  • (2023)3D Bézier Guarding: Boundary-Conforming Curved Tetrahedral MeshingACM Transactions on Graphics10.1145/361833242:6(1-19)Online publication date: 5-Dec-2023
  • (2022)Compatible intrinsic triangulationsACM Transactions on Graphics10.1145/3528223.353017541:4(1-12)Online publication date: 22-Jul-2022
  • (2022)A general two-stage initialization for sag-free deformable simulationsACM Transactions on Graphics10.1145/3528223.353016541:4(1-13)Online publication date: 22-Jul-2022
  • (2022)Variational quadratic shape functions for polygons and polyhedraACM Transactions on Graphics10.1145/3528223.353013741:4(1-14)Online publication date: 22-Jul-2022
  • (2022)True seamsACM Transactions on Graphics10.1145/3528223.353012841:4(1-16)Online publication date: 22-Jul-2022
  • (2022)Computing sparse integer-constrained cones for conformal parameterizationsACM Transactions on Graphics10.1145/3528223.353011841:4(1-13)Online publication date: 22-Jul-2022
  • (2021)Bijective and coarse high-order tetrahedral meshesACM Transactions on Graphics10.1145/3476576.347673940:4(1-16)Online publication date: Aug-2021
  • (2021)Authoring consistent landscapes with flora and faunaACM Transactions on Graphics10.1145/3450626.345995240:4(1-13)Online publication date: 19-Jul-2021
  • (2021)Unconventional patterns on surfacesACM Transactions on Graphics10.1145/3450626.345993340:4(1-16)Online publication date: 19-Jul-2021
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media