skip to main content
10.5555/1367956.1367965acmconferencesArticle/Chapter ViewAbstractPublication PagesieConference Proceedingsconference-collections
research-article

Portal-based sound propagation for first-person computer games

Published: 03 December 2007 Publication History

Abstract

First-person computer games are a popular modern video game genre. A new method is proposed, the Directional Propagation Cache, that takes advantage of the very common portal spatial subdivision method to accelerate environmental acoustics simulation for first-person games, by caching sound propagation information between portals.

References

[1]
J. M. Airey, J. H. Rohlf, and J. Frederick P. Brooks. Towards image realism with interactive update rates in complex virtual building environments. In SI3D '90: Proceedings of the 1990 symposium on Interactive 3D graphics, pages 41--50, New York, NY, USA, 1990. ACM Press.
[2]
V. R. Algazi, R. O. Duda, R. Duraiswami, N. A. Gumerov, and Z. Tang. Approximating the head-related transfer function using simple geometric models of the head and torso. The Journal of the Acoustical Society of America, 112(5):2053--2064, 2002.
[3]
J. Allen and D. Berkley. Image method for efficiently simulating small room acoustics. Journal of the Acoustical Society of America, 65(4):943--950, 1979.
[4]
J. Amanatides. Ray tracing with cones. In SIGGRAPH '84: Proceedings of the 11th annual conference on Computer graphics and interactive techniques, pages 129--135, New York, NY, USA, 1984. ACM Press.
[5]
A. L. Bot and A. Bocquillet. Comparison of an integral equation on energy and the ray-tracing technique in room acoustics. The Journal of the Acoustical Society of America, 108(4):1732--1740, 2000.
[6]
E. Brown and P. Cairns. A grounded investigation of game immersion. In CHI '04: CHI '04 extended abstracts on Human factors in computing systems, pages 1297--1300, New York, NY, USA, 2004. ACM Press.
[7]
P. T. Calamia and U. P. Svensson. Fast time-domain edge-diffraction calculations for interactive acoustic simulations. EURASIP Journal on Advances in Signal Processing, 2007:Article ID 63560, 10 pages, 2007.
[8]
N. Dadoun, D. G. Kirkpatrick, and J. P. Walsh. The geometry of beam tracing. In Proceedings of the Symposium on Computational Geometry, pages 55--61, June 1985.
[9]
I. A. Drumm and Y. W. Lam. The adaptive beam-tracing algorithm. Journal of the Acoustical Society of America, 107(3):1405--1412, 2000.
[10]
C. F. Eyring. Reverberation time in "dead" rooms. Journal of the Acoustical Society of America, 1:217--241, 1930.
[11]
C. F. Eyring. Methods of calculating the average coefficient of sound absorption. The Journal of the Acoustical Society of America, 4(3):178--192, 1933.
[12]
A. Farina. Pyramid Tracing vs. Ray Tracing for the simulation of sound propagation in large rooms, pages 109--116. Computational Mechanics Publications, 1995.
[13]
A. Farina. Room impulse responses as temporal and spatial filters. In The 9th Western Pacific Acoustics Conference, Seoul, Korea, June 2006.
[14]
T. Funkhouser, N. Tsingos, I. Carlborn, G. Elko, M. Sondhi, J. E. West, G. Pingali, P. Min, and A. Ngan. A beam tracing method for interactive architectural acoustics. Journal of the Acoustical Society of America, 115:739--756, 2004.
[15]
W. Gardner and K. Martin. HRTF measurements of a KEMAR dummy-head microphone. Technical Report 280, M.I.T. Media Lab Perceptual Computing, May 1994.
[16]
W. G. Gardner. Applications of Digital Signal Processing to Audio and Acoustics, chapter 3, page 85. Kluwer Academic Publishers, 1998.
[17]
M. A. Gerzon. Recording concert hall acoustics for posterity. Journal of the Audio Engineering Society, 23:569--571, September 1975.
[18]
W. Hartmann. Localization of sound in rooms. Journal of the Acoustical Society of America, 74(5):1380--1391, Nov. 1983.
[19]
P. S. Heckbert and P. Hanrahan. Beam tracing polygonal objects. Computer Graphics, 18, 1984.
[20]
B. Hook. The quake 3 arena rendering architecture. In Game Developer's Conference, 1999.
[21]
id Software. Doom 3. http://www.idsoftware.com, August 2004.
[22]
J.-M. Jot. An analysis/synthesis approach to real-time artificial reverberation. icassp, 2:221--224, 1992.
[23]
B. F. G. Katz. Boundary element method calculation of individual head-related transfer function. I. rigid model calculation. The Journal of the Acoustical Society of America, 110(5):2440--2448, 2001.
[24]
U. Krockstadt. Calculating the acoustical room response by the use of a ray tracing technique. J. Sound and Vibrations, 8, 1968.
[25]
J. Mitchell, G. McTaggart, and C. Green. Shading in valve's source engine. In SIGGRAPH '06: ACM SIGGRAPH 2006 Courses, pages 129--142, New York, NY, USA, 2006. ACM Press.
[26]
D. T. Murphy, M. J. Beeson, J. Mullen, and D. M. Howard. Roomweaver and digitract: Two digital waveguide mesh acoustic modeling reseach tools. The Journal of the Acoustical Society of America, 116(4):2579--2579, 2004.
[27]
R. F. Norris and C. A. Andree. An instrumental method of reverberation measurement. The Journal of the Acoustical Society of America, 1(1):32--32, 1929.
[28]
P. E. Sabine. The measurement of sound absorption coefficients by the reverberation method. The Journal of the Acoustical Society of America, 1(1):27--27, 1929.
[29]
S. Santarelli, N. Kopco, B. G. Shinn-Cunningham, and D. Brungart. Near-field localization in echoic rooms. The Journal of the Acoustical Society of America, 105(2):1024--1024, 1999.
[30]
L. Savioja. Modeling Techniques for Virtual Acoustics. Doctoral thesis, Helsinki University of Technology, Telecommunications Software and Multimedia Laboratory, 1999.
[31]
B. Schiettecatte, A. Nackaerts, and B. D. Moor. Real-time acoustics simulation using mesh-tracing. In Proceedings of the International Computer Music Conference, Singapore, 2003.
[32]
M. Schroeder. Natural sounding artificial reverberation. Journal of the Audio Engineering Society, 10(3):219--223, 1962.
[33]
R. S. Shankland. Architectural acoustics in america to 1930. The Journal of the Acoustical Society of America, 61(2):250--254, 1977.
[34]
J. O. Smith III. On the equivalence of the digital waveguide and finite difference time domain schemes. http://arXiv.org/abs/physics/0407032, December 2005. Online Publication.
[35]
J. O. Smith III. Physical Audio Signal Processing: for Virtual Musical Instruments and Digital Audio Effects. http://ccrma.stanford.edu/~jos/pasp/, 2006.
[36]
J. O. Smith III and D. Rocchesso. Aspects of digital waveguide networks for acoustic modeling applications. Web published at http://ccrma.stanford.edu/jos/wgj/., December 1997.
[37]
J. Sodnik, S. Tomazic, R. Grasset, A. Duenser, and M. Billinghurst. Spatial sound localization in an augmented reality environment. In OZCHI '06: Proceedings of the 20th conference of the computer-human interaction special interest group (CHISIG) of Australia on Computer-human interaction: design: activities, artefacts and environments, pages 111--118, New York, NY, USA, 2006. ACM Press.
[38]
T. Takala and J. Hahn. Sound rendering. In SIGGRAPH '92: Proceedings of the 19th annual conference on Computer graphics and interactive techniques, pages 211--220, New York, NY, USA, 1992. ACM Press.
[39]
R. R. Torres, U. P. Svensson, and M. Kleiner. Computation of edge diffraction for more accurate room acoustics auralization. Journal of the Acoustical Society of America, 109(2):600--610, 2001.
[40]
N. Tsingos, I. Carlbom, G. Elbo, R. Kubli, and T. Funkhouser. Validating acoustical simulations in bell labs box. IEEE Computer Graphics and Applications, 22(4):28--37, 2002.
[41]
N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom. Modeling acoustics in virtual environments using the uniform theory of diffraction. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 545--552, New York, NY, USA, 2001. ACM Press.
[42]
Valve Corporation. Half-life 2. http://www.valvesoftware.com, 2004.
[43]
A. Wakuda, H. Furuya, K. Fujimoto, K. Isogai, and K. Anai. Effects of arrival direction of late sound on listener envelopment. Acoustical Science and Technology, 24, 4:181--185, 2003.
[44]
R. Waterhouse. On standard methods of measurement in architectural acoustics. Journal of the Acoustical Society of America, 29:544--546, 1957.
[45]
S. Woodcock. Game AI: State of the Industry. http://www.gamasutra.com, 1999.

Cited By

View all
  • (2012)Interactive sound propagation using compact acoustic transfer operatorsACM Transactions on Graphics10.1145/2077341.207734831:1(1-12)Online publication date: 2-Feb-2012

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
IE '07: Proceedings of the 4th Australasian conference on Interactive entertainment
December 2007
174 pages
ISBN:9781921166877

Sponsors

Publisher

RMIT University

Melbourne, Australia

Publication History

Published: 03 December 2007

Check for updates

Qualifiers

  • Research-article

Conference

IE07: Australian Conference on Interactive Entertainment
December 3 - 5, 2007
Melbourne, Australia

Acceptance Rates

Overall Acceptance Rate 64 of 148 submissions, 43%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)3
Reflects downloads up to 22 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2012)Interactive sound propagation using compact acoustic transfer operatorsACM Transactions on Graphics10.1145/2077341.207734831:1(1-12)Online publication date: 2-Feb-2012

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media